DOI QR코드

DOI QR Code

Downregulation of Foxe1 by HR suppresses Msx1 expression in the hair follicles of HrHp mice

  • Choi, Jee-Hyun (Department of Biomedical Sciences, Research Institute of Molecular Genetics, College of Medicine, The Catholic University of Korea) ;
  • Kim, Byong-Kyu (Department of Biomedical Sciences, Research Institute of Molecular Genetics, College of Medicine, The Catholic University of Korea) ;
  • Kim, Jeong-Ki (Department of Biomedical Sciences, Research Institute of Molecular Genetics, College of Medicine, The Catholic University of Korea) ;
  • Lee, Hwa-Young (Department of Biomedical Sciences, Research Institute of Molecular Genetics, College of Medicine, The Catholic University of Korea) ;
  • Park, Jong-Keun (Department of Biomedical Sciences, Research Institute of Molecular Genetics, College of Medicine, The Catholic University of Korea) ;
  • KimYoon, Sung-Joo (Department of Biomedical Sciences, Research Institute of Molecular Genetics, College of Medicine, The Catholic University of Korea)
  • 투고 : 2011.05.12
  • 심사 : 2011.05.25
  • 발행 : 2011.07.31

초록

Hairless (HR), a transcriptional cofactor, is highly expressed in the skin and brain. To characterize the effects of HR expression in the skin, we examined its capacity for transcriptional regulation of its target genes in mouse skin and keratinocytes. We found that Foxe1 mRNA expression was suppressed in HR-overexpressing skin, as well as in HR-expressing keratinocytes. In turn, Msx1 expression was downregulated contingent on Foxe1 downregulation in skin and keratinocytes. We also found that expression of Sfrp1 was also correlated with that of Foxe1. Further investigation of the mechanisms involved in the transcriptional regulation of these genes will facilitate our understanding of the relationship among genes involved in hair follicle morphogenesis and cycling.

키워드

참고문헌

  1. Paus, R. and Foitzik, K. (2004) In search of the "hair cycle clock": a guided tour. Differentiation 72, 489-511. https://doi.org/10.1111/j.1432-0436.2004.07209004.x
  2. Stenn, K. S. and Paus, R. (2001) Controls of hair follicle cycling. Physiol. Rev. 81, 449-494. https://doi.org/10.1152/physrev.2001.81.1.449
  3. Millar, S. E. (2002) Molecular mechanisms regulating hair follicle development. J. Invest. Dermatol. 118, 216-225. https://doi.org/10.1046/j.0022-202x.2001.01670.x
  4. Schmidt-Ullrich, R. and Paus, R. (2005) Molecular principles of hair follicle induction and morphogenesis. Bioessays. 27, 247-261. https://doi.org/10.1002/bies.20184
  5. Mikkola, M. L. (2007) Genetic basis of skin appendage development. Semin. Cell. Dev. Biol. 18, 225-236. https://doi.org/10.1016/j.semcdb.2007.01.007
  6. Shimomura, Y. and Christiano, A. M. (2010) Biology and genetics of hair. Annu. Rev. Genomics Hum. Genet. 11, 109-132. https://doi.org/10.1146/annurev-genom-021610-131501
  7. Baek, I. C., Kim, J. K., Cho, K. H., Cha, D. S., Cho, J. W., Park, J. K., Song, C. W. and Yoon, S. K. (2009) A novel mutation in Hr causes abnormal hair follicle morphogenesis in hairpoor mouse, an animal model for Marie Unna Hereditary Hypotrichosis. Mamm. Genome 20, 350-358. https://doi.org/10.1007/s00335-009-9191-8
  8. Kim, J. K., Kim, E., Baek, I. C., Kim, B. K., Cho, A. R., Kim, T. Y., Song, C. W., Seong, J. K., Yoon, J. B., Stenn, K. S., Parimoo, S. and Yoon, S. K. (2010) Overexpression of Hr links excessive induction of Wnt signaling to Marie Unna hereditary hypotrichosis. Hum. Mol. Genet. 19, 445-453. https://doi.org/10.1093/hmg/ddp509
  9. Beaudoin, G. M., 3rd, Sisk, J. M., Coulombe, P. A. and Thompson, C. C. (2005) Hairless triggers reactivation of hair growth by promoting Wnt signaling. Proc. Natl. Acad. Sci. U. S. A. 102, 14653-14658. https://doi.org/10.1073/pnas.0507609102
  10. Hsieh, J. C., Slater, S. A., Whitfield, G. K., Dawson, J. L., Hsieh, G., Sheedy, C., Haussler, C. A. and Haussler, M. R. (2010) Analysis of hairless corepressor mutants to characterize molecular cooperation with the vitamin D receptor in promoting the mammalian hair cycle. J. Cell. Biochem. 110, 671-686. https://doi.org/10.1002/jcb.22578
  11. Moraitis, A. N., Giguere, V. and Thompson, C. C. (2002) Novel mechanism of nuclear receptor corepressor interaction dictated by activation function 2 helix determinants. Mol. Cell. Biol. 22, 6831-6841. https://doi.org/10.1128/MCB.22.19.6831-6841.2002
  12. Potter, G. B., Beaudoin, G. M., 3rd, DeRenzo, C. L., Zarach, J. M., Chen, S. H. and Thompson, C. C. (2001) The hairless gene mutated in congenital hair loss disorders encodes a novel nuclear receptor corepressor. Genes Dev. 15, 2687-2701. https://doi.org/10.1101/gad.916701
  13. Kim, B. K., Baek, I. C., Lee, H. Y., Kim, J. K., Song, H. H. and Yoon, S. K. (2010) Gene expression profile of the skin in the 'hairpoor' (HrHp) mice by microarray analysis. BMC Genomics 11, 640. https://doi.org/10.1186/1471-2164-11-640
  14. Carlsson, P. (2002) Forkhead transcription factors: key players in development and metabolism. Dev. Biol. 250, 1-23. https://doi.org/10.1006/dbio.2002.0780
  15. Mecklenburg, L., Nakamura, M., Sundberg, J. P. and Paus, R. (2001) The nude mouse skin phenotype: the role of Foxn1 in hair follicle development and cycling. Exp. Mol. Pathol. 71, 171-178. https://doi.org/10.1006/exmp.2001.2386
  16. Lee, D., Prowse, D. M. and Brissette, J. L. (1999) Association between mouse nude gene expression and the initiation of epithelial terminal differentiation. Dev. Biol. 208, 362-374.
  17. Perrone, L. (2000) The thyroid transcription factor 2 (TTF-2) is a promoter-specific DNA-binding independent transcriptional repressor. Biochem. Biophys. Res. Commun. 275, 203-208. https://doi.org/10.1006/bbrc.2000.3232
  18. Eichberger, T., Regl, G., Ikram, M. S., Neill, G. W., Philpott, M. P., Aberger, F. and Frischauf, A. M. (2004) FOXE1, a new transcriptional target of GLI2 is expressed in human epidermis and basal cell carcinoma. J. Invest. Dermatol. 122, 1180-1187. https://doi.org/10.1111/j.0022-202X.2004.22505.x
  19. Brancaccio, A. (2004) Requirement of the forkhead gene Foxe1, a target of sonic hedgehog signaling, in hair follicle morphogenesis. Hum. Mol. Genet. 13, 2595- 2606. https://doi.org/10.1093/hmg/ddh292
  20. Venza, I., Visalli, M., Parrillo, L., De Felice, M., Teti, D. and Venza, M. (2010) Msx1 and TGF-3 are novel target genes functionally regulated by FOXE1. Hum. Mol. Genet. 20, 1016-1025.
  21. Rendl, M., Lewis, L. and Fuchs, E. (2005) Molecular dissection of mesenchymal-epithelial interactions in the hair follicle. PLoS Biol. 3, e331. https://doi.org/10.1371/journal.pbio.0030331
  22. Revet, I., Huizenga, G., Koster, J., Volckmann, R., van Sluis, P., Versteeg, R. and Geerts, D. (2010) Msx1 induces the Wnt pathway antagonist genes DKK1, DKK2, DKK3, and SFRP1 in neuroblastoma cells, but does not block Wnt3 and Wnt5A signalling to DVL3. Cancer Lett. 289, 195-207. https://doi.org/10.1016/j.canlet.2009.08.019
  23. Liu, F., Chu, E. Y., Watt, B., Zhang, Y., Gallant, N. M., Andl, T., Yang, S. H., Lu, M. M., Piccolo, S., Schmidt- Ullrich, R., Taketo, M. M., Morrisey, E. E., Atit, R., Dlugosz, A. A. and Millar, S. E. (2008) Wnt/beta-catenin signaling directs multiple stages of tooth morphogenesis. Dev. Biol. 313, 210-224. https://doi.org/10.1016/j.ydbio.2007.10.016
  24. Iwatsuki, K., Liu, H. X., Gronder, A., Singer, M. A., Lane, T. F., Grosschedl, R., Mistretta, C. M. and Margolskee, R. F. (2007) Wnt signaling interacts with Shh to regulate taste papilla development. Proc. Natl. Acad. Sci. U. S. A. 104, 2253-2258. https://doi.org/10.1073/pnas.0607399104
  25. Li, C., Xiao, J., Hormi, K., Borok, Z. and Minoo, P. (2002) Wnt5a participates in distal lung morphogenesis. Dev. Biol. 248, 68-81. https://doi.org/10.1006/dbio.2002.0729
  26. St-Jacques, B., Dassule, H. R., Karavanova, I., Botchkarev, V. A., Li, J., Danielian, P. S., McMahon, J. A., Lewis, P. M., Paus, R. and McMahon, A. P. (1998) Sonic hedgehog signaling is essential for hair development. Curr. Biol. 8, 1058-1068. https://doi.org/10.1016/S0960-9822(98)70443-9
  27. Reddy, S., Andl, T., Bagasra, A., Lu, M. M., Epstein, D. J., Morrisey, E. E. and Millar, S. E. (2001) Characterization of Wnt gene expression in developing and postnatal hair follicles and identification of Wnt5a as a target of Sonic hedgehog in hair follicle morphogenesis. Mech. Dev. 107, 69-82. https://doi.org/10.1016/S0925-4773(01)00452-X
  28. Iseki, S., Araga, A., Ohuchi, H., Nohno, T., Yoshioka, H., Hayashi, F. and Noji, S. (1996) Sonic hedgehog is expressed in epithelial cells during development of whisker, hair, and tooth. Biochem. Biophys. Res. Commun. 218, 688-693. https://doi.org/10.1006/bbrc.1996.0123
  29. Chiang, C., Swan, R. Z., Grachtchouk, M., Bolinger, M., Litingtung, Y., Robertson, E. K., Cooper, M. K., Gaffield, W., Westphal, H., Beachy, P. A. and Dlugosz, A. A. (1999) Essential role for Sonic hedgehog during hair follicle morphogenesis. Dev. Biol. 205, 1-9. https://doi.org/10.1006/dbio.1998.9103
  30. Livak, K. J. and Schmittgen, T. D. (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402-408. https://doi.org/10.1006/meth.2001.1262
  31. Nam, Y., Kim, J. K., Cha, D. S., Cho, J. W., Cho, K. H., Yoon, S., Yoon, J. B., Oh, Y. S., Suh, J. G., Han, S. S., Song, C. W. and Yoon, S. K. (2006) A novel missense mutation in the mouse hairless gene causes irreversible hair loss: genetic and molecular analyses of Hr m1Enu. Genomics 87, 520-526. https://doi.org/10.1016/j.ygeno.2005.12.005
  32. Flagg, A. E., Earley, J. U. and Svensson, E. C. (2007) FOG-2 attenuates endothelial-to-mesenchymal transformation in the endocardial cushions of the developing heart. Dev. Biol. 304, 308-316. https://doi.org/10.1016/j.ydbio.2006.12.035

피인용 문헌

  1. Hairless Plays a Role in Formation of Inner Root Sheath via Regulation ofDlx3Gene vol.287, pp.20, 2012, https://doi.org/10.1074/jbc.M111.320770
  2. Patterns of FOXE1 Expression in Papillary Thyroid Carcinoma by Immunohistochemistry vol.23, pp.7, 2013, https://doi.org/10.1089/thy.2012.0466
  3. Hairless down-regulates expression of Msx2 and its related target genes in hair follicles vol.71, pp.3, 2013, https://doi.org/10.1016/j.jdermsci.2013.04.019
  4. Exploration of the association between FOXE1 gene polymorphism and differentiated thyroid cancer: a meta-analysis vol.19, pp.1, 2018, https://doi.org/10.1186/s12881-018-0604-y