DOI QR코드

DOI QR Code

Expansion of a Fire-Ball and Subsequent Shock-Wave Propagation due to Underwater TNT Explosion

해저에서 TNT 폭발에 의한 파이어볼의 팽창과 이에 따른 충격파 전파

  • Kwak, Ho-Young (Dept. of Mechanical Engineering, Chung-Ang Univ.) ;
  • Kang, Ki-Moon (Dept. of Mechanical Engineering, Chung-Ang Univ.) ;
  • Ko, Il-Gon (Dept. of Mechanical Engineering, Chung-Ang Univ.)
  • Received : 2010.12.10
  • Accepted : 2011.04.13
  • Published : 2011.07.01

Abstract

Until now, several empirical models for assessing the damage due to TNT explosions have been proposed. A set of analytical solutions for the time-dependent radius of an expanding fire-ball after detonation of TNT was obtained by solving the continuity, Euler (momentum), and energy equations with a "polytrope" assumption at the fire-ball center. The shock waves developed from the rapid expansion of a fire-ball under water were obtained by using the KirkwoodBBethe hypothesis. The calculated period of bubble oscillation and the maximum radius of the bubble resulting from the fire-ball due to a violent underwater TNT explosion were in good agreement with the experimental data.

지금껏 TNT 폭발에 의한 피해를 계산하는 방법에는 몇 가지 실험에 의한 모델이 제안되었다. 본 논문에서는 fire-ball 중심에서 가스가 단열이라는 가정하에 연속방정식, 오일러 및 에너지 방정식에 대한 해석적 해를 얻어 TNT 가 폭발 후 팽창하는 fire-ball 에 대한 시간에 따른 반경의 변화를 얻었다. 급격히 팽창하는 fire-ball 에 의한 충격파의 전파는 Kirkwood-Bethe 가정에 의해 구하였다. 해저에서 TNT 가폭발하게 되면 fire-ball 이 생성, 팽창해 기포로 거동하게 된다. 이 기포의 주기와 최대반경에 대한 계산 값을 실험 값과 비교한 결과 계산 값은 실험 값과 잘 일치 하였다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. Rayleigh, 1917, "On the Pressure Developed in a Liquid During the Collapse of a Spherical Cavity," Phil. Mag., Vol. 34, pp. 94-99. https://doi.org/10.1080/14786440808635681
  2. Keller, J.B. and Miksis, M., 1980, "Bubble Oscillations of Large Amplitude," J. Acoust. Soc. Am., Vol. 68, pp. 628-633. https://doi.org/10.1121/1.384720
  3. Yasui, K., 1995, "Effects of Thermal Conduction on Bubble Dynamics Near the Sonoluminescence Threshold," J. Acoust. Soc. Am., Vol. 98, pp. 2772-2778. https://doi.org/10.1121/1.413242
  4. Taylor, G.I., 1946, "The Air Wave Surrounding an Expanding Sphere," Proceedings of Roy. Soc. London, Series A, Math. and Phys. Sci., Vol. 186, pp. 273-292. https://doi.org/10.1098/rspa.1946.0044
  5. Zeldovich, Ya. B. and Raizer, Yu. P., 1966, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Vol.I, Academic Press.
  6. Landau, L.D. and Lifshitz, E.M., 1959, Fluid Mechanics, Pergamon Press, Oxford.
  7. Kwak, H., and Yang, H., 1995, "An Aspect of Sonoluminescence from Hydrodynamic Theory," J. Phys. Soc. Jpn, Vol. 64, pp. 1980-1992. https://doi.org/10.1143/JPSJ.64.1980
  8. Jun, J., and Kwak, H., 2000, "Gravitational Collapse of Newtonian stars," Int. J. Modern Phys. D, Vol. 9, pp. 35-42.
  9. Tang, M.J., and Baker, Q.A., 1999, "A New Set of Blast Curves from Vapor Cloud Explosion," Process Safety Progress, Vol. 18, pp. 235-240. https://doi.org/10.1002/prs.680180412
  10. Kato, K., Aoki, T., Kubota, S., and Yoshida, M., 2006, "A Numerical Scheme for Strong Blast Wave Driven by Explosion," Int. J. Numer. Meth. Fluids, Vol. 51, pp. 1335-1353. https://doi.org/10.1002/fld.1155
  11. Knapp, R.T., Daily, J.W., Hammit, F.G., 1970, Cavitation, McGraw-Hill.
  12. Clarke, C.J. and Carswell, R.F., 2007, Principles of Astrophysical Fluid Dynamics, Cambridge University Press, Cambridge.
  13. Luo, H., Baum, J.D. and Loehner, R., 2004, "On the Computation of Multi-Material Flows Using ALE Formulation," J. Compt. Phys. Vol. 194, pp. 304-328. https://doi.org/10.1016/j.jcp.2003.09.026
  14. Kwak, H., Ko, I., Kang, K. and Kang J., 2011, Fire-Ball Expansion and Subsequent Shock Wave Propagation by Explosive Detonation, (Submitted for Publication).
  15. Cole, R.H., 1965, Underwater Explosions, Dover Publications Inc, New York.
  16. Wardlaw, A.B., Mair, H.U., 1998, "Spherical Solutions of an Underwater Explosion Bubble," Shock and Vibration, Vol. 5, pp. 89-102. https://doi.org/10.1155/1998/690105