DOI QR코드

DOI QR Code

Early Identification of Putative Zygotic Seedlings in Citrus Crosses between 'Morita unshiu' (Citrus. unshiu Marc.) and 'Ponkan' (C. reticulata Blanco) Using RAPD and SRAP

RAPD와 SRAP 방법을 이용한 '성전온주'(C. unshiu Marc.)와 '병감'(C. reticulate Blanco) 교잡실생 식별

  • Yun, Su-Hyun (Citrus Research Station, National Institute of Horticultural & Herbal Science R.D.A.) ;
  • Moon, Young-Sun (Department of Horticulture, Yeungnam University) ;
  • Jin, Seong-Beom (Research Institute for Subtropical Horticulture, Jeju National University) ;
  • Kang, In-Kyu (Department of Environmental Horticulture, Kyungpook National University) ;
  • Lee, Dong-Hoon (Citrus Research Station, National Institute of Horticultural & Herbal Science R.D.A.)
  • 윤수현 (국립원예특작과학원 감귤시험장) ;
  • 문용선 (영남대학교 원예학과) ;
  • 진성범 (제주대학교 아열대원예연구소) ;
  • 강인규 (경북대학교 환경원예학과) ;
  • 이동훈 (국립원예특작과학원 감귤시험장)
  • Received : 2011.02.21
  • Accepted : 2011.04.10
  • Published : 2011.04.30

Abstract

The purpose of this study was to evaluate the methods of identifying zygotic seedlings of crosses between 'Morita unshiu' (Citrus. unshiu Marc.) and 'Ponkan' (C. reticulata Blanco). In order to investigate the frequency and position of zygotic seedlings and to determine the efficiency of zygotic seedling identification, random amplified polymorphic DNA (RAPD) and sequence-related amplified polymorphism (SRAP) were performed using UBC (9, 27, 229, 230, and 254) primers and F4/R27, F7/R14, F12/R10, and F44/R62 primer sets, respectively. A total of 37 putative zygotic seedlings out of 55 individuals were selected by RAPD and SRAP. The F7/R14 primer pair showed a screening ability of 45.5% (25/55), whereas the primer UBC27 revealed the highest efficiency of zygotic seedling identification (50.9%, 28/55). When both UBC27 and F7/R14 were properly used for selection of hybridized seedlings of 'Morita unshiu' (C. unshiu Marc.) and 'Ponkan' (C. reticulata Blanco), screening efficiency was increased to 60% (33/55) for putative zygotic seedlings. Thus, it is possible to select putative hybrid zygotic seedlings in an accurate and effective manner by RAPD and SRAP.

감귤 '성전온주'(C. unshiu Marc)와 '병감'(C. reticulate Blanco)을 교배하여 얻은 다배성종자에서 교잡실생을 생육초기에 효과적으로 식별할 수 있는 방법 얻고자 PCR 기법에 바탕을 둔 RAPD와 SRAP 방법을 수행하였다. UBC (9, 27, 229, 230, 254) 프라이머와 SRAP (F4/R27, F7/R14, F12/R10, F44/R62) 프라이머 조합들을 사용하여 55개의 교배종자에서 얻은 실생들을 조사한 결과 37개의 종자에서 교잡실생을 식별할 수 있었다. F7/R14프라이머 조합에서는 45.5% (25/55)의 교잡실생을 식별할 수 있었고, UBC27 프라이머에서는 50.9% (28/55)의 식별효율을 보였다. 성전온주와 병감의 교배종자에서 UBC27 프라이머와 F7/R14 프라이머조합을 동시에 적용하였을 때에는 33개(60%, 33/55)의 종자에서 교잡실생을 식별할 수 있었다. 따라서 RAPD와 SRAP를 이용하였을 때 다배성 종자에서 교잡실생을 생육초기에 효율적으로 식별할 수 있었다.

Keywords

References

  1. Andrade-Rodriguez, M., A. Villegas-Monter, C. G. Carrillo-Castaneda, and A. Garcia-Velazquez. 2004. Polyembryony and identification of Volkamerian lemon zygotic and nucellar seedlings using RAPD. Pesq. Agropec. Bras. Brasilia 39, 551-559.
  2. Andrade-Rodriguez, M., A. Villegas-Monter, A. Gutierrez-Espinosa, C. G. Carrillo-Castaneda, and A. Garcia-Velazquez. 2005. Polyembryony and RAPD markers for identification of zygotic and nucellar seedlings in Citrus. Agrociencia 39, 371-383.
  3. Bastianel, B., S. F. Schwardz, C. H. D. Filho, L. L. Lin, M. Machado, and O. C. Koller. 1998. Identification of zygotic and nucellar tangerine seedlings (Citrus spp.) using RAPD. Genet. Mol. Biol. 21, 123-127.
  4. Birren, B. and E. Lai. 1996. Non-mammalian genome analysis : a practical guide. pp. 75-134, Academic Press Inc., New York.
  5. Elisiario, P. J., E. M. Justo, and J. M. Leitao. 1999. Identification of mandarin hybrids by isozyme and RAPD analysis. Scientia Horticulturae 81, 287-299. https://doi.org/10.1016/S0304-4238(99)00013-8
  6. Ferriol, M. B., B. Pico, and F. Nuez. 2003. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet. 107, 271-282. https://doi.org/10.1007/s00122-003-1242-z
  7. Hospital, F., C. Chevalet, and P. Mulsant. 1992. Using markers in gene introgression breeding programs. Genetics 132, 1199-1210.
  8. Lee, M. 1995. DNA markers and plant breeding programs. Adv. Agron. 55, 265-344. https://doi.org/10.1016/S0065-2113(08)60542-8
  9. Li, G., and C. F. Quiros. 2001. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103, 455-461. https://doi.org/10.1007/s001220100570
  10. Li, G., M. Gao, B. Yang, and C. F. Quiros. 2003. Gene for gene alignment between the Brassica and Arabidopsis genomes by direct transcriptome mapping. Theor. Appl. Genet. 107, 168-180.
  11. Lin, Z. X., X. L. Zhang, and Y. C. Nie. 2004. Evaluation of application of a new molecular marker SRAP on analysis of F2 segregation population and genetic diversity in cotton. Acta Genetica Sinica 31, 622-626.
  12. Luro, F., F. Laigret, J. M. Bove, and P. Ollitrault. 1995. DNA amplified fingerprinting, a useful tool for determination of genetic origin and diversity analysis in Citrus. HortScience 30, 1063-1067.
  13. Moon, D. K. and K. C. Ko. 1991. Isozymes as genetic markers in Citrus growing in Cheju and their use for identification of nucellar and zygotic seedlings. J. Korean Soc. Hort. Sci. 32, 59-65.
  14. Oliveira, A. C., A. N. Garcia, M. Cristofani, and M. A. Machado. 2002. Identification of citrus hybrids through the combination of leaf apex morphology and SSR markers. Euphytica 128, 397-403. https://doi.org/10.1023/A:1021223309212
  15. Rao, M. N., J. R. Soneji, C. Chen, S. Huang, and F. G. Gmitter Jr. 2008. Characterization of zygotic and nucellar seedlings from sour orange-like citrus rootstock candidates using RAPD and EST-SSR markers. Tree Genet. Genomes 4, 113-124.
  16. Ruiz, C., M. Paz Breto, and M. J. Asins. 2000. A quick methodology to identify sexual seedlings in citrus breeding programs using SSR markers. Euphytica 112, 89-94. https://doi.org/10.1023/A:1003992719598
  17. Scarano, M. T., N. Tusa, L. Abbate, S. Lucretti, L. Nardi, and S. Ferrante. 2003. Flow cytometry, SSR and modified AFLP markers for the identification of zygotic plantlets in backcrosses between 'Femminello' lemon cybrids (2n and 4n) and a diploid clone of 'Femminello' lemon (Citrus limon L. Burm. F.) tolerant to mal secco disease. Plant Science 164, 1009-1017. https://doi.org/10.1016/S0168-9452(03)00088-8
  18. Sun, S. J. W. Gao, S. Q. Lin, J. Zhu, B. G. Xie, and Z. B. Lin. 2006. Analysis of genetic diversity in Ganoderma population with a novel molecular marker SRAP. Appl. Microbiol. Biotechnol. 72, 537-543. https://doi.org/10.1007/s00253-005-0299-9
  19. Tansksley, S. D., N. D. Young, A. H. Paterson, and M. W. Bonierbale. 1989. RFLP mapping in plant breeding: new tool for an old science. Biotechnology 7, 257-264. https://doi.org/10.1038/nbt0389-257
  20. Tatum, J. H., C. J. Hearn, and R. E. Berry. 1978. Characterization of citrus cultivar by chemical differentiation. J. Amer. Soc. Hort. Sci. 103, 492-496.
  21. Weinbaum, S. A., E. Cohen, and P. Spiegel-Roy. 1982. Rapid screening of satsuma mandarin progeny to distinguish nucellar and zygotic seedling. HortScience 17, 239-240.
  22. Yun, J. U., H. B. Yang, Y. H. Jung, S. H. Yun, K. S. Kim, C. S. Kim, and K. J. Song. 2007. Identification of zygotic and nucellar mandarin seedlings using randomly amplified polymorphic DNA. Hort. Environ. Biotechnol. 48, 171-175.

Cited by

  1. Early Identification of Citrus Zygotic Seedlings Using Pollen-specific Molecular Markers vol.33, pp.4, 2015, https://doi.org/10.7235/hort.2015.14200
  2. Molecular Verification of Putative Zygotic Seedlings in Different Intra-Specific Crosses in Mandarins (Citrus reticulata) by SSR Markers pp.2249-7218, 2018, https://doi.org/10.1007/s40003-018-0355-1