DOI QR코드

DOI QR Code

압력값 모니터링을 통한 배관 내 가스누출감지에 대한 실험적 연구

An Experimental Study on Detection of Gas Leakage Position by Monitoring Pressure Values at City Gas Pipeline

  • 진경민 (국민대학교 대학원 기계공학과) ;
  • 최규홍 (국민대학교 대학원 기계공학과) ;
  • 이송규 (국민대학교 대학원 기계공학과) ;
  • 정태용 (국민대학교 기계시스템공학부) ;
  • 신동훈 (국민대학교 기계시스템공학부) ;
  • 황승식 (국민대학교 기계시스템공학부) ;
  • 오정석 (한국가스안전공사)
  • Jin, Kyoung-Min (Dept. of Mechanical Engineering, Graduate School of Kookmin University) ;
  • Choi, Gyu-Hong (Dept. of Mechanical Engineering, Graduate School of Kookmin University) ;
  • Lee, Song-Kyu (Dept. of Mechanical Engineering, Graduate School of Kookmin University) ;
  • Chung, Tae-Yong (Dept. of Mechanical Engineering, Kookmin University) ;
  • Shin, Dong-Hoon (Dept. of Mechanical Engineering, Kookmin University) ;
  • Hwang, Seung-Sik (Dept. of Mechanical Engineering, Kookmin University) ;
  • Oh, Jeong-Seok (Korea Gas Safety Corporation)
  • 투고 : 2011.10.17
  • 심사 : 2011.12.09
  • 발행 : 2011.12.31

초록

도시가스 배관망의 안전관리 및 위험예측은 매우 중요한 문제로 인식되고 있으며 가스 누출지점을 실시간으로 감지함으로써 안전사고 예방을 위한 노력은 필수적이다. 따라서, 본 연구에서는 가스누출 시, 압력변화에 따른 상관관계(correlation)를 통해 실시간 누출지점감지를 목적으로 연구를 진행하였다. 본 연구에서는 총 378 m의 배관에 5개의 누출밸브를 설치하여 실험하였고, 시뮬레이터를 통해 누출지점을 감지함으로서 실제 누출지점과 비교해 보았다. 실험결과, 실험을 통한 누출지점과 실제 누출지점은 6 m 내의 차이를 보였으며 향후, 본 기술의 적용이 필요한 위험구역에서의 실증을 통한 상용화가 수반되어야 할 것이다.

Gas pipeline safety management and risk prediction are recognized as a very important issue. And the effort to prevent accidents is essential. So, in this study, it was studied through correlation of pressure changes for leak point detection in real-time. It experimented by installing the five leakage valves in the pipe of 378 m and compared the actual leak points with simulation results. The results showed that experimental leak points and the actual leak points have differences within the 6 m. And this technology has to be commercialized by the demonstration in dangerous zone.

키워드

참고문헌

  1. H.E. Emara-Shabaik, Y.A. Khulief and I. Hussaini, "Simulation of transient flow in pipelines for computerbased operations monitoring", Int. J. Numer. Meth. Fluids, 44, 257-275, (2004). https://doi.org/10.1002/fld.636
  2. C.Y Cho, S.P Jang, J.H Nam, S.H Lim, D.H shin, T.Y Chung, "Development of pipeline network analysis model for operation monitoring of city-gas supply metworks", The Korea Socity for Energy Engineering, 486-493, (2008).
  3. 하종만 "배관망 해석의 이해와 활용", 유체기계저널, 6, 90-98, (2003). https://doi.org/10.5293/KFMA.2003.6.2.090
  4. K. Fukushima, R. Maeshima, A. Kinoshita, H. Shiraishi and I. Koshijima, "Gas pipeline leak detection system using the online simulation method", Comp. & Chem. Eng, 24, 453-456, (2000).
  5. S. Wang, H. Yang and H. Liu, "Design of the gas pipes monitoring system based on Compact PCI", Comp. Meas. & Cont, 14, 358-359, 370, (2006).
  6. L. Billmann, and R. Isermann, Leakd detection methods for pipelines, Automatica, 23, 381-385, (1987). https://doi.org/10.1016/0005-1098(87)90011-2
  7. W. J. Turner, and N. R. Mudford, Leak detection, timing, location and sizing in gas pipelines, Mathematical and Computer Modelling, 10, 609-527, (1988). https://doi.org/10.1016/0895-7177(88)90131-8
  8. S. Belsito, P. Lombardi, P. Andreussi, and S. Barerjce, Leak detection in liquefied gas pipelines by artificial neural network, AIChE Journal, 44, 2675-2688, (1998). https://doi.org/10.1002/aic.690441209
  9. A. C. Caputo, and P. M.Pelagagge, An inverse approach for piping networks monitoring, Journal of Loss Prevention in the Process Industries, 15, 497-505, (2002). https://doi.org/10.1016/S0950-4230(02)00036-0
  10. R. Jamal, and H. Pichlik, LabVIEW. Applications and Solutions, Prentice Hall, New Jersey, (1999).