DOI QR코드

DOI QR Code

Effect of implant surface microtopography by hydroxyapatite grit-blasting on adhesion, proliferation, and differentiation of osteoblast-like cell line, MG-63

  • Park, Sung-Jae (Department of Dentistry, School of Medicine, Ajou University) ;
  • Bae, Sang-Bum (Department of Dentistry, School of Medicine, Ajou University) ;
  • Kim, Su-Kyoung (Department of Implant Research, Implant R&D Center, Osstem Co., Ltd.) ;
  • Eom, Tae-Gwan (Department of Implant Research, Implant R&D Center, Osstem Co., Ltd.) ;
  • Song, Seung-Il (Department of Dentistry, School of Medicine, Ajou University)
  • Received : 2011.02.08
  • Accepted : 2011.06.07
  • Published : 2011.06.30

Abstract

Objective: This study examined the potential of the in vitro osteogenesis of microtopographically modified surfaces, RBM (resorbable blasting media) surfaces, which generate hydroxyapatite grit-blasting. Methods: RBM surfaces were modified hydroxyapatite grit-blasting to produce microtopographically modified surfaces and the surface morphology, roughness or elements were examined. To investigate the potential of the in vitro osteogenesis, the osteoblastic cell adhesion, proliferation, and differentiation were examined using the human osteoblast-like cell line, MG-63 cells. Osteoblastic cell proliferation was examined as a function of time. In addition, osteoblastic cell differentiation was verified using four different methods of an ALP activity assay, a mineralization assay using alizarin red-s staining, and gene expression of osteoblastic differentiation marker using RT-PCR or ELISA. Results: Osteoblastic cell adhesion, proliferation and ALP activity was elevated on the RBM surfaces compared to the machined group. The cells exhibited a high level of gene expression of the osteoblastic differentiation makers (osteonectin, type I collagen, Runx-2, osterix). imilar data was represented in the ELISA produced similar results in that the RBM surface increased the level of osteocalcin, osteopontin, TGF-beta1 and PGE2 secretion, which was known to stimulate the osteogenesis. Moreover, alizarin red-s staining revealed significantly more mineralized nodules on the RBM surfaces than the machined discs. Conclusion: RBM surfaces modified with hydroxyapatite grit-blasting stimulate the in vitro osteogenesis of MG-63 cells and may accelerate bone formation and increase bone-implant contact.

Keywords

References

  1. Davies JE. Mechanisms of endosseous integration. Int J Prosthodont 1998;11:391-401.
  2. Berglundh T, Abrahamsson I, Lang NP, Lindhe J. De novo alveolar bone formation adjacent to endosseous implants. Clin Oral Implants Res 2003;14:251-62. https://doi.org/10.1034/j.1600-0501.2003.00972.x
  3. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 2. Review focusing on clinical knowledge of different surfaces. Int J Prosthodont 2004;17:544-64.
  4. Esposito M, Coulthard P, Thomsen P, Worthington HV. The role of implant surface modifications, shape and material on the success of osseointegrated dental implants: a Cochrane systematic review. Eur J Prosthodont Restor Dent 2005;13:15-31.
  5. Puleo DA, Thomas MV. Implant surfaces. Dent Clin North Am 2006;50:323-38. https://doi.org/10.1016/j.cden.2006.03.001
  6. Zhao G, Schwartz Z, Wieland M, Rupp F, Geis-Gerstorfer J, Cochran DL, et al. High surface energy enhances cell response to titanium substrate microstructure. J Biomed Mater Res A 2005; 74:49-58.
  7. Cooper LF, Masuda T, Yliheikkila PK, Felton DA. Generalizations regarding the process and phenomenon of osseointegration: Part II. In vitro studies. Int J Oral Maxillofac Implants 1998;13:163-74.
  8. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21:667-81. https://doi.org/10.1016/S0142-9612(99)00242-2
  9. Kieswetter K, Schwarts Z, Dean DD, Boyan BD. The role of implant surface characteristic in the healing of bone. Crit Rev Oral Biol Med 1996;7:329-45. https://doi.org/10.1177/10454411960070040301
  10. Thomas KA, Cook SD. An evaluation of variables influencing implant fixation by direct bone apposition. J Biomed Mater Res 1985;19:875-901. https://doi.org/10.1002/jbm.820190802
  11. Predecki P, Stephan JE, Auslaender BA, Mooney VL, Kirkland K. Kinetics of bone growth into cylindrical channels in aluminum oxide and titanium. J Biomed Mater Res 1972;6:375-400. https://doi.org/10.1002/jbm.820060506
  12. Carlsson L, Rostlund T, Albrektsson B, Albrektsson T. Removal torques for polished and rough titanium implants. Int J Oral Maxillofac Implants 1988;3:21-4.
  13. Lauer G, Wiedmann-Al-Ahmad M, Otten JE, Hubner U, Schmelzeisen R, Schilli W. The titanium surface texture effects adherence and growth of human gingival keratinocytes and human maxillar osteoblast-like cells in vitro. Biomaterials 2001;22: 2799-809. https://doi.org/10.1016/S0142-9612(01)00024-2
  14. Mustafa K, Wennerberg A, Wroblewski J, Hultenby K, Lopez BS, Arvidson K. Determining optimal surface roughness of $TiO_{2}$ blasted titanium implant material for attachment, proliferation, and differentiation of cells derived from human mandibular alveolar bone. Clin Oral Implants Res 2001;12:515-25. https://doi.org/10.1034/j.1600-0501.2001.120513.x
  15. Ellingsen JE, Johansson CB, Wennerberg A, Holmen A. Improved retention and bone-to implant contact with fluoridemodified titanium implants. Int J Oral Maxillofac Implants 2004;19:659-66.
  16. Anselme K, Bigerelle M, Noel B, Dufresne E, Judas D, Iost A, et al. Qualitative and quantitative study of human osteoblast adhesion on materials with various surface roughnesses. J Biomed Mater Res 2000;49:155-66. https://doi.org/10.1002/(SICI)1097-4636(200002)49:2<155::AID-JBM2>3.0.CO;2-J
  17. Anselme K. Osteoblast adhesion on biomaterials. Biomaterials 2000;21:667-81. https://doi.org/10.1016/S0142-9612(99)00242-2
  18. Wennerberg A, Albrektsson T, Andersson B. Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int J Oral Maxillofac Implants 1996;11:38-45.
  19. Sader MS, Balduino A, Soares Gde A, Borojevic R. Effect of three distinct treatments of titanium surface on osteoblast attachment, proliferation, and differentiation. Clin Oral Implants Res 2005;16:667-75. https://doi.org/10.1111/j.1600-0501.2005.01135.x
  20. Le Guehennec L, Lopez-Heredia MA, Enkel B, Weiss P, Amouriq Y, Layrolle P. Osteoblastic cell behaviour on different titanium implant surfaces. Acta Biomater 2008;4:535-43. https://doi.org/10.1016/j.actbio.2007.12.002
  21. Citeau A, Guicheux J, Vinatier C, Layrolle P, Nguyen TP, Pilet P, et al. In vitro biological effects of titanium rough surface obtained by calcium phosphate grit blasting. Biomaterials 2005;26:157-65. https://doi.org/10.1016/j.biomaterials.2004.02.033
  22. Sanz A, Oyarzun A, Farias D, Diaz I. Experimental study of bone response to a new surface treatment of endosseous titanium implants. Implant Dent 2001;10:126-31. https://doi.org/10.1097/00008505-200104000-00009
  23. Novaes AB Jr, Souza SL, de Oliveira PT, Souza AM. Histomorphometric analysis of the bone-implant contact obtained with 4 different implant surface treatments placed side by side in the dog mandible. Int J Oral Maxillofac Implants 2002;17:377-83.
  24. Ginsberg SD, Che S. Combined histochemical staining, RNA amplification, regional, and single cell cDNA analysis within the hippocampus. Lab Invest 2004;84:952-62. https://doi.org/10.1038/labinvest.3700110
  25. Hutton LC, Castillo-Melendes M, Smythe GA, Walker DW. Microglial activation, macrophage infiltration, and evidence of cell death in the fetal brain after uteroplacental administration of lipopolysaccharide in sheep in late gestation. Am J Obstet Gynecol 2008;198:e1-11.
  26. Engvall E. Enzyme immunoassay ELISA and EMIT. Methods Enzymol 1980;70(A):419-39.
  27. Jones JV, Mansour M, James H, Sadi D, Carr RI. A substrate amplification system for enzyme-linked immunoassays: II. Demonstration of its applicability for measuring anti-DNA antibodies. J Immunol Methods 1989;118:79-84. https://doi.org/10.1016/0022-1759(89)90056-2
  28. Harada M, Hiraoka BY, Fukasawa K, Fukasawa KM. Purification and properties of bovine dental-pulp alkaline-phosphatase. Arch Oral Biol 1982;27:69-74. https://doi.org/10.1016/0003-9969(82)90179-0
  29. Jung K, Pergande M. Influence of inorganic phosphate on the activity determination of isoenzymes of alkaline phosphatase in various buffer systems. Clin Chim Acta 1980;102:215-9. https://doi.org/10.1016/0009-8981(80)90035-2
  30. Valarmathi MT, Yost MJ, Goodwin RL, Potts JD. The influence of proepicardial cells on the osteogenic potential of marrow stromal cells in a three-dimensional tubular scaffold. Biomaterials 2008;29:2203-16. https://doi.org/10.1016/j.biomaterials.2008.01.025
  31. Rausch-fan X, Qu Z, Wieland M, Matejka M, Schedle A. Differentiation and cytokine synthesis of human alveolar osteoblast compared to osteoblast-like cells (MG63) in response to titanium surfaces. Dent Mater 2008;24:102-10. https://doi.org/10.1016/j.dental.2007.03.001
  32. Gregory CA, Gunn WG, Peister A, Prockop DJ. An Alizarin redbased assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 2004;329:77-84. https://doi.org/10.1016/j.ab.2004.02.002
  33. Malladi P, Xu Y, Chiou M, Giaccia AJ, Longaker MT. Effect of reduced oxygen tension on chondrogenesis and osteogenesis in adipose-derived mesenchymal cells. Am J Physiol Cell Physiol 2006;290:C1139-46. https://doi.org/10.1152/ajpcell.00415.2005
  34. Sudo H, Kodama HA, Amagai Y, Yamamoto S, Kasai S. In vitro differentiation and calcification in a new clonal osteogenic cell line derived from newborn mouse calvaria. J Cell Biol 1983;96:191-8. https://doi.org/10.1083/jcb.96.1.191
  35. Bachle M, Kohal RJ. A systematic review of the influence of different titanium surfaces on proliferation, differentiation and protein synthesis of osteoblast-like MG63 cells. Clin Oral Implants Res 2004;15:683-92. https://doi.org/10.1111/j.1600-0501.2004.01054.x
  36. Kim MJ, Choi MU, Kim CW. Activation of phospholipase D1 by surface roughness of titanium in MG63 osteoblast-like cell. Biomaterials 2006;27:5502-11. https://doi.org/10.1016/j.biomaterials.2006.06.023
  37. Schwartz Z, Lohmann CH, Oefinger J, Bonewald LF, Dean DD, Boyan BD. Implant surface characteristics modulate differentiation behavior of cells in the osteoblastic lineage. Adv Dent Res 1999;13:38-48. https://doi.org/10.1177/08959374990130011301
  38. Anselme K, Bigerelle M. Topography effects of pure titanium substrates on human osteoblast long-term adhesion. Acta Biomater 2005;1:211-22. https://doi.org/10.1016/j.actbio.2004.11.009
  39. Kim MJ, Kim CW, Lim YJ, Heo SJ. Microrough titanium surface affects biologic response in MG63 osteoblast-like cells. J Biomed Mater Res A 2006;79:1023-32.
  40. Wennerberg A, Albrektsson T, Andersson B. Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int J Oral Maxillofac Implants 1996;11:38-45.
  41. Deligianni DD, Katsala ND, Koutsoukos PG, Missirlis YF. Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength. Biomaterials 2001;22:87-96.
  42. Diniz MG, Pinheiro MA, Andrade Junior AC, Fischer RG. Characterization of titanium surfaces for dental implants with inorganic contaminant. Braz Oral Res 2005;19:106-11. https://doi.org/10.1590/S1806-83242005000200006
  43. Piattelli A, Degidi M, Paolantonio M, Mangano C, Scarano A. Residual aluminum oxide on the surface of titanium implants has no effect on osseointegration. Biomaterials 2003;24:4081-9. https://doi.org/10.1016/S0142-9612(03)00300-4
  44. Canabarro A, Diniz MG, Paciornik S, Carvalho L, Sampaio EM, Beloti MM, et al. High concentration of residual aluminum oxide on titanium surface inhibits extracellular matrix mineralization. J Biomed Mater Res A 2008;87A:588-97. https://doi.org/10.1002/jbm.a.31810
  45. Rodrigo A, Valles G, Saldanna L, Rodriguez M, Martinez ME, Munuera L, et al. Alumina particles influence the interactions of cocultured osteoblasts and macrophages. J Orthop Res 2006;24:46-54. https://doi.org/10.1002/jor.20007
  46. Wennerberg A, Albrektsson T, Johansson C, Andersson B. Experimental study of turned and grit-blasted screw-shaped implants with special emphasis on effects of blasting material and surface topography. Biomaterials 1996;17:15-22. https://doi.org/10.1016/0142-9612(96)80750-2
  47. Li LH, Kong YM, Kim HW, Kim YW, Kim HE, Heo SJ, Koak YK. Improved biological performance of Ti implants due to surface modification by micro-arc oxidation. Biomaterials 2004;25:2867-75. https://doi.org/10.1016/j.biomaterials.2003.09.048
  48. Giordano C, Sandrini E, Busini V, Chiesa R, Fumagalli G, Giavaresi G, et al. A new chemical etching process to improve endosseous implant osseointegration: in vitro evaluation on human osteoblast-like cells. Int J Artif Organs 2006;29:772-80. https://doi.org/10.1177/039139880602900807
  49. Xavier SP, Carvalho PS, Beloti MM, Rosa AL. Response of rat bone marrow cells to commercially pure titanium submitted to different surface treatments. J Dent. 2003;31:173-80. https://doi.org/10.1016/S0300-5712(03)00027-7
  50. Schneider GB, Perinpanayagam H, Clegg M, Zaharias R, Seabold D, Keller J, et al. Implant surface roughness affects osteoblast gene expression. J Dent Res 2003;82:372-6. https://doi.org/10.1177/154405910308200509
  51. Schneider GB, Whitson SW, Cooper LF. Restricted and coordinated expression of beta3-integrin and bone sialoprotein during cultured osteoblast differentiation. Bone 1999;24:321-7. https://doi.org/10.1016/S8756-3282(99)00007-1
  52. Schneider GB, Zaharias R, Seabold D, Keller J, Stanford C. Differentiation of preosteoblasts is affected by implant surface microtopographies. J Biomed Mater Res A 2004;69:462-8.
  53. Schneider GB, Zaharias R, Stanford C. Osteoblast integrin adhesion and signaling regulate mineralization. J Dent Res 2001;80:1540-4. https://doi.org/10.1177/00220345010800061201

Cited by

  1. Antibacterial efficacy of triple-layered poly(lactic-<i>co</i>-glycolic acid)/nanoapatite/lauric acid guided bone regeneration membrane on periodontal bacteria vol.36, pp.3, 2017, https://doi.org/10.4012/dmj.2016-177
  2. Synthesis of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface vol.399, pp.None, 2011, https://doi.org/10.1016/j.apsusc.2016.12.105
  3. In Vitro Evaluation of Osteoblast Response to the Effect of Injectable Platelet-rich Fibrin Coating on Titanium Disks vol.22, pp.2, 2011, https://doi.org/10.5005/jp-journals-10024-3039
  4. Local tissue effects and peri‐implant bone healing induced by implant surface treatment: an in vivo study in the sheep vol.56, pp.4, 2011, https://doi.org/10.1111/jre.12878
  5. Architectural bone parameters and the relationship to titanium lattice design for powder bed fusion additive manufacturing vol.47, pp.None, 2011, https://doi.org/10.1016/j.addma.2021.102273