Inhibitory Effects of Rhizoma Arisaematis on Osteoclast Differentiation and Bone Resorption

파골세포의 분화와 뼈 흡수에 천남성의 억제 효과

  • Lee, Myeung-Su (Department of Internal Medicine, Division of Rheumatology, University of Wonkwang College of Medicine) ;
  • Lee, Chang-Hoon (Department of Internal Medicine, Division of Rheumatology, University of Wonkwang College of Medicine) ;
  • Park, Kie-In (Division of Biological Science, School of Natural Science, Chonbuk National University) ;
  • Kim, Ha-Young (Department of Internal Medicine, Division of Endocrinology and Metabolism, University of Wonkwang College of Medicine, Sanbon Medical Center)
  • 이명수 (원광대학교 의과대학 류마티스내과학교실) ;
  • 이창훈 (원광대학교 의과대학 류마티스내과학교실) ;
  • 박기인 (전북대학교 자연과학대학 생물학과) ;
  • 김하영 (원광대학교 의과대학 내분비내과학교실)
  • Received : 2010.11.16
  • Accepted : 2011.01.28
  • Published : 2011.02.25

Abstract

Osteoclasts play a critical role in bone-related diseases such as osteoporosis and rheumatoid arthritis by resorbing the bone. Recently, natural products from plants have been extensively studied as therapeutic drugs to treat and prevent various diseases. Here, we examined the effects of rhizoma arisaematis on ostoclast differentiation and bone resorption. We showed that rhizoma arisaematis significantly suppressed receptor activator of nuclear factor-${\kappa}B$ ligand (RANKL)-induced osteoclast differentiation in bone marrow-derived macrophages (BMMs) in a dose dependent manner but have little or no effect on the cytotoxicity of BMMs and RAW264.7 cells. We found that rhizoma arisaematis iarrow-ed the RANKL-induced c-Fos and nuclear factor of activated T cells (NFAT)c1, which is a master regulator of osteoclast differentiation. Furthermore, rhizoma arisaematis suppressed the mRNA expression of tartrate resistant-acid phosphatase and cathepsin K iaduced by RANKL in BMMs. in y chanistic studies, rhizoma arisaematis considerably iarrow-ed I-${\kappa}B$ degradation, which is a negative regulator of NF-${\kappa}B$, but iaduced the phosphderlation of p-38, ERK, and JNK.MMlso, we found that rhizoma arisaematis significantly iarrow-ed osteoclastic bone resorption. Taken tarether, our results suggest that rhizoma arisaematis suppresses osteoclast differentiation through down-regulatd the mRANKL-induced c-Fos and NFATc1 expression and iarrow-s bone resorption.

Keywords

References

  1. Becker, D.J., Kilgore, M.L., Morrisey, M.A. The societal burden of osteoporosis. Curr. Rheumatol. Rep. 12: 186-191, 2010. https://doi.org/10.1007/s11926-010-0097-y
  2. Rodan, G.A., Martin, T.J. Therapeutic approaches to bone diseases. Science 289: 1508-1514, 2000. https://doi.org/10.1126/science.289.5484.1508
  3. Melton, J.J. 3rd. Who has osteoporosis? A conflict between clinical and public health perspectives. J. Bone Miner. Res. 15: 2309-2314, 2000 https://doi.org/10.1359/jbmr.2000.15.12.2309
  4. Ballabriga, A. Morphological and physiological changes during growth: an update. Eur. J. Clin. Nutr. 54 Suppl 1: S1-6, 2000.
  5. Seeman, E. Is a change in bone mineral density a sensitive and specific surrogate of anti-fracture efficacy?. Bone. 41: 308-317, 2007. https://doi.org/10.1016/j.bone.2007.06.010
  6. Clowes, J.A., Eghbali-Fatourechi, G.Z., McCready, L., Oursler, M.J., Khosla, S., Riggs, B.L.Estrogen action on bone marrow osteoclast lineage cells of postmenopausal women in vivo. Osteoporos. Int. 20: 761-769, 2009. https://doi.org/10.1007/s00198-008-0731-y
  7. Mundy, G.R. Osteoporosis and inflammation. Nutr. Rev. 65: S147-151, 2007. https://doi.org/10.1301/nr.2007.dec.S147-S151
  8. Boyle, W.J., Simonet W.S., Lacey D.L. Osteoclast differentiation and activation. Nature, 423: 337-342, 2003. https://doi.org/10.1038/nature01658
  9. Lee, Z.H., Kim, H.H. Signal transduction by receptor activator of nuclear factor kappa B in osteoclasts. Biochem. Biophys. Res. Commun. 305: 211-214, 2003. https://doi.org/10.1016/S0006-291X(03)00695-8
  10. Asagiri, M, Takayanagi, H. The molecular understanding of osteoclast differentiation. Bone 40: 251-264, 2007. https://doi.org/10.1016/j.bone.2006.09.023
  11. Takayanagi, H. The role of NFAT in osteoclast formation. Ann. N. Y. Acad. Sci. 1116: 227-237, 2007. https://doi.org/10.1196/annals.1402.071
  12. Kim, K., Kim, J.H., Lee, J., Jin, H.M., Lee, S.H., Fisher, D.E., Kook, H., Kim, K.K., Choi, Y., Kim, N. Nuclear factor of activated T cells c1 induces osteoclast-associated receptor gene expression during tumor necrosis factor-related activation-induced cytokine-mediated osteoclastogenesis. J. Biol. Chem. 280: 35209-35216, 2005. https://doi.org/10.1074/jbc.M505815200
  13. Takayanagi, H., Kim, S., Koga, T., Nishina, H., Isshiki, M., Yoshida, H., Saiura, A., Isobe, M., Yokochi, T., Inoue, J., Wagner, E.F., Mak, T.W., Kodama, T., Taniguchi, T. Induction and activation of the transcription factor NFATc1 (NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev. Cell. 3: 889-901, 2002. https://doi.org/10.1016/S1534-5807(02)00369-6
  14. Khosla, S., Burr, D., Cauley, J., Dempster, D.W., Ebeling, P.R. Felsenberg, D., Gagel, R.F., Gilsanz, V., Guise, T., Koka, S., McCauley, L.K., McGowan, J., McKee, M.D., Mohla, S., Pendrys, D.G., Raisz, L.G., Ruggiero, S.L., Shafer, D.M., Shum, L., Silverman, S.L., Van Poznak, C.H., Watts, N., Woo, S.B., Shane, E. Bisphosphonate-associated osteonecrosis of the jaw: report of a task force of the American Society for Bone and Mineral Research. J. Bone Miner. Res. 22: 1479-1491, 2007. https://doi.org/10.1359/jbmr.0707onj
  15. Qin, M.Z. Comparative studies of the histology of rhizoma Arisaematis and Pinelliae. Zhong. Yao. Tong. Bao. 13: 6-8, 1988.
  16. Du, S.S., Lin, H.Y., Zhou, Y.X., Wei, L.X. Contents of total flavonoids in Rhizoma Arisaematis. Zhongguo. Zhong. Yao. Za. Zhi. 26: 411-412, 2001.
  17. Kim, J.J., Kim, D.J., Lee, B.K., Kim, K.J., Lee, M.S., Lee, J.H., Kim, H.S., Lee, C.H., Byun, S.J., Jang, S.J., Song, J.H., Oh, J.M., Lee, J.S., Kim, K.M., Chun, C.H. Effects of Curcumin on osteoclasts. Korean J. Oriental Physiology & Pathology 22: 1566-1571, 2008.
  18. Macian, F., Garcia-Rodríguez, C., Rao, A. Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. EMBO J. 19: 4783-4795, 2000. https://doi.org/10.1093/emboj/19.17.4783
  19. Takayanagi, H. Mechanistic insight into osteoclast differentiation in osteoimmunology. J. Mol. Med. 83: 170-179, 2005. https://doi.org/10.1007/s00109-004-0612-6
  20. Matsuo, K., Galson, D.L., Zhao, C., Peng, L., Laplace, C., Wang, K.Z., Bachler, M.A., Amano, H., Aburatani, H., Ishikawa, H., Wagner, E.F. Nuclear factor of activated T-cells (NFAT) rescues osteoclastogenesis in precursors lacking c-Fos. J. Biol. Chem. 279: 26475-26480, 2004. https://doi.org/10.1074/jbc.M313973200
  21. Kim, Y., Sato, K., Asagiri, M., Morita, I., Soma, K., Takayanagi, H. Contribution of nuclear factor of activated T cells c1 to the transcriptional control of immunoreceptor osteoclast-associated receptor but not triggering receptor expressed by myeloid cells-2 during osteoclastogenesis. J. Biol. Chem. 280: 32905-32913, 2005. https://doi.org/10.1074/jbc.M505820200
  22. Kim, K., Lee, S.H., Kim H.J., Choi, Y., Kim, N. NFATc1 induces osteoclast fusion via up-regulation of Atp6v0d2 and the dendritic cell-specific transmembrane protein (DC-STAMP). Mol. Endocrinol. 22: 176-185, 2008.
  23. Murai, H., Hiragami, F., Kawamura, K., Motoda, H., Koike, Y., Inoue, S., Kumagishi, K., Ohtsuka, A., Kano, Y. Differential response of heat-shock-induced p38 MAPK and JNK activity in PC12 mutant and PC12 parental cells for differentiation and apoptosis. Acta. Med. Okayama. 64: 55-62, 2010.
  24. Gupta, M., Gupta, S.K., Hoffman, B., Liebermann, D.A. Gadd45a and Gadd45b protect hematopoietic cells from UV-induced apoptosis via distinct signaling pathways, including p38 activation and JNK inhibition. J. Biol. Chem. 281: 17552-17558, 2006. https://doi.org/10.1074/jbc.M600950200
  25. Watts, B.A. 3rd, Di., Mari. J.F., Davis, R.J., Good, D.W. Hypertonicity activates MAP kinases and inhibits HCO-3 absorption via distinct pathways in thick ascending limb. Am. J. Physiol. 275: F478-486, 1998.
  26. Dent, P., Yacoub, A., Fisher, P.B., Hagan, M.P., Grant, S. MAPK pathways in radiation responses. Oncogene 22: 5885-5896, 2003. https://doi.org/10.1038/sj.onc.1206701