DOI QR코드

DOI QR Code

Improvement of crop traits using auxin binding protein gene abp57

옥신 호르몬 결합단백질 ABP57 유전자를 이용한 작물의 형질개선

  • Kim, Dong-Hern (Bio-crop Development Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Lee, Keun-Pyo (International Technology Cooperation Center, Rural Development Administration)
  • 김동헌 (농촌진흥청 국립농업과학원 신작물개발과) ;
  • 이근표 (농촌진흥청 국제협력과)
  • Received : 2011.05.25
  • Accepted : 2011.06.03
  • Published : 2011.06.30

Abstract

Auxin is a group of small natural and synthetic molecules having diverse regulatory functions in plant growth and development. In this review, two auxin binding proteins identified by biochemical experiments to measure their auxin binding activities and biochemical functions are described. ABP1, a 22 kDa auxin binding protein, shows strong auxin binding affinity and possibly plays an important role in plant development, although its biochemical function are still unclear. ABP57, a 57 kDa soluble protein from rice shoots, has both of IAA binding activity and the plasma membrane proton pump activation. Although it is yet to be accomplished, the improvement of agronomic traits using auxin binding proteins is worth to be considered, since auxin is known to be related to such a diverse crop traits.

Keywords

References

  1. Bauly J., Sealy I., Macdonald H., Brearley J., Droge S., Hillmer S., Robinson D., Venis M., Blatt M., Lazarus C. and Napier. R. (2000) Overexpression of Auxin-Binding Protein Enhances the Sensitivity of Guard Cells to Auxin. Plant Physiol 124: 1229-1238 https://doi.org/10.1104/pp.124.3.1229
  2. Braun N., Wyrzykowska J., Muller P., David K., Couch D., Perrot-Rechenmann, C. and Fleming A.J. (2008). Conditional repression of auxin binding protein1 reveals that it coordinates cell division and cell expansion during postembryonic shoot development in arabidopsis and tobacco. Plant Cell 20:2746-2762 https://doi.org/10.1105/tpc.108.059048
  3. Chen J.-G., Ullah H., Young J.C., Sussman M.R. and Jones A.M. (2001). ABP1 is required for organized cell elongation and division in Arabidopsis embryogenesis. Genes & Development 15:902-911 https://doi.org/10.1101/gad.866201
  4. Cleland R. (1973). Auxin-induced hydrogen ion excretion from Avena coleoptiles. Proceedings of the National Academy of Sciences of the United States of America 70:3092-3093 https://doi.org/10.1073/pnas.70.11.3092
  5. Darwin C. (1880). The power of movement in plants. London: John Murray
  6. Farrimond J. A., Elliott M. C. and Clack D. W. (1978) Charge separation as a component of the structural requirements for hormone activity. Nature 274:401-402 https://doi.org/10.1038/274401a0
  7. Gabathuler R. and Cleland R.E. (1985). Auxin regulation of a proton translocating ATPase in pea root plasma pembrane vesicles. Plant Physiol. 79:1080-1085 https://doi.org/10.1104/pp.79.4.1080
  8. Hager A. (2003) Role of the plasma membrane H+-ATPase in auxin-historical and new aspects. J Plant Res 116:483-505 https://doi.org/10.1007/s10265-003-0110-x
  9. Henderson J., Atkinson A.E., Lazarus C.M., Hawes C.R., Napier R.M., Macdonald H. and King L.A. (1995). Stable expression of maize auxin-binding protein in insect cell lines. Febs Letters 371:293-296 https://doi.org/10.1016/0014-5793(95)00922-V
  10. Jones A.M. (1994). Auxin-binding proteins. Annual Review of Plant Physiology and Plant Molecular Biology 45:393-420 https://doi.org/10.1146/annurev.pp.45.060194.002141
  11. Karine M. David, D.C., Nils Braun, Spencer Brown, Jeanne Grosclaude, Catherine Perrot-Rechenmann,. (2007). The auxinbinding protein 1 is essential for the control of cell cycle. The Plant Journal 50:197-206 https://doi.org/10.1111/j.1365-313X.2007.03038.x
  12. Kim D., Kim Y.-S. and Jung J. (1997). Involvement of soluble proteinous factors in auxin-induced modulation of P-type ATPase in rice (Oryza sativa L.) seedlings. Febs Letters 409:273-276 https://doi.org/10.1016/S0014-5793(97)00527-9
  13. Kim Y.S., Kim D.H. and Jung J. (1998). Isolation of a novel auxin receptor from soluble fractions of rice (Oryza sativa L.) shoots. Febs Letters 438:241-244 https://doi.org/10.1016/S0014-5793(98)01307-6
  14. Kim Y.S., Kim D. and Jung J. (2000). Two isoforms of soluble auxin receptor in rice (Oryza sativa L.) plants: Binding property for auxin and interaction with plasma membrane $H^+$-ATPase. Plant Growth Regulation 32:143-150 https://doi.org/10.1023/A:1010745310101
  15. Kim Y.S., Min J.K., Kim D. and Jung J. (2001). A soluble auxin-binding protein, ABP57 -Purification with anti-bovine serum albumin antibody and characterization of its mechanistic role in the auxin effect on plant plasma membrane $H^+$-ATPase. Journal of Biological Chemistry 276:10730-10736 https://doi.org/10.1074/jbc.M009416200
  16. Koegl F and Kostermans D. (1934) Heteroauxin als Stoffwechselprodukt niederer pflanzlicher Organismen. Isolierung aus Hefe. Hoppf Seyler's Z Physiol Chem 228:113-121 https://doi.org/10.1515/bchm2.1934.228.3-6.113
  17. Lee K., Kim M-I., Kwon Y-J., Kim M., Kim Y-S. and Kim D. (2009) Cloning and chararcterization of a gene encoding ABP57, a soluble auxin-binding protein. Plant Biotech Reports 3:293-299 https://doi.org/10.1007/s11816-009-0101-z
  18. Lee G. (2009) Gene cloning and characterization of novel auxin-binding protein. PhD Thesis, Seoul National University, Korea
  19. Lobler M. and Klambt D. (1985). Auxin-binding protein from coleoptile membranes of corn (Zea mays L.). I. Purification by immunological methods and characterization. J. Biol. Chem. 260:9848-9853.
  20. Napier R.M., David K.M. and Perrot-Rechenmann C. (2002). A short history of auxin-binding proteins. Plant Mol Biol 49:339-348. https://doi.org/10.1023/A:1015259130955
  21. Ozga J.A., van Huizen R. and Reinecke, D.M. (2002). Hormone and seed-specific regulation of pea fruit growth. Plant Physiol. 128:1379-1389. https://doi.org/10.1104/pp.010800
  22. Palmegren M.G. (1990). An $H^+$-ATPase Assay: Proton Pumping and ATPase Activity Determined Simultaneously in the Same Sample. Plant Physiol. 94:882-886. https://doi.org/10.1104/pp.94.3.882
  23. Palmegren M.G (2001). Plant Plasma Membrane $H^+$-ATPases: Powerhouses for Nutrient Uptake. Ann Rev Plant Biol 52:817-845 https://doi.org/10.1146/annurev.arplant.52.1.817
  24. Porter W. L. and Thimann K. V. (1965) Molecular requirements for auxin action. Halogenated indoles and indoleacetic acid. Phytochemistry 4:229-243 https://doi.org/10.1016/S0031-9422(00)86169-5
  25. Ruck A., Palme K., Venis M., Napier R. and Felle H. (1993) Patch-clamp analysis establisheds a role for an auxin binding protein in the auxin stimulation of plasma mambrane current in Zea mays protoplasts. Plant J 4:41-46 https://doi.org/10.1046/j.1365-313X.1993.04010041.x
  26. Santoni V.o., Vansuyt G.a. and Rossignol M. (1990). Differential auxin sensitivity of proton translocation by plasma membrane $H^+$-ATPase from tobacco leaves. Plant Science 68:33-38 https://doi.org/10.1016/0168-9452(90)90149-I
  27. Scherer G.F.E. (1981). Auxin-stimulated ATPase in membrane fractions from pumpkin hypocotyls (Cucurbita maxima L.). Planta 151:434-438 https://doi.org/10.1007/BF00386536
  28. Scherer G.F.E. (1984). Stimulation of ATPase activity by auxin is dependent on ATP concentration. Planta 161:394-397 https://doi.org/10.1007/BF00394568
  29. Taiz L. and Zeiger E. (2002). Plant physiology. Third Edition. Plant physiology. Third Edition
  30. Teale W.D., Paponov I.A. and Palme K. (2006). Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847-859 https://doi.org/10.1038/nrm2020
  31. van Huizen R., Ozga J.A. and Reinecke D.M. (1997). Seed and Hormonal Regulation of Gibberellin 20-Oxidase Expression in Pea Pericarp. Plant Physiol. 115:123-128 https://doi.org/10.1104/pp.115.1.123
  32. Went F. and Thimann K. (1937) Phytohormones. Mcmillian, New York
  33. Woodward A.W. and Bartel B. (2005). Auxin: Regulation, action, and interaction. Annals of Botany 95:707-735 https://doi.org/10.1093/aob/mci083
  34. Zolman B.K., Yoder A. and Bartel B. (2000). Genetic Analysis of Indole-3-butyric Acid Responses in Arabidopsis thaliana Reveals Four Mutant Classes. Genetics 156:1323-1337

Cited by

  1. Auxin-responsive SMALL AUXIN UP RNA genes : recent research progress and its application for crop improvement vol.40, pp.2, 2013, https://doi.org/10.5010/JPB.2013.40.2.059