DOI QR코드

DOI QR Code

Antioxidant Capacity and Quinone Reductase Activity of Methanol Extracts and Fractions from Papaya Seed

파파야씨 추출물 및 분획물의 항산화, QR 활성

  • Yu, Mi-Hee (Department of Food Science and Technology, Keimyung University) ;
  • Lee, Sung-Gyu (Department of Food Science and Technology, Keimyung University) ;
  • Im, Hyo-Gwon (Department of Food Science and Technology, Keimyung University) ;
  • Chae, In-Gyeong (Department of Food Science and Technology, Keimyung University) ;
  • Kim, Hyun-Jeong (The Center for Traditional Microorganism Resources, Keimyung University) ;
  • Lee, Jin-Ho (Department of Chemistry, Keimyung University) ;
  • Lee, In-Seon (Department of Food Science and Technology, Keimyung University)
  • Received : 2011.03.31
  • Accepted : 2011.04.24
  • Published : 2011.06.30

Abstract

In this study, the antioxidant activity of methanol extracts and fractions from papaya seed were investigated in vitro. Total polyphenol contents of methanol extracts and fractions from papaya seed varied from 17.74 to 125.99 ${\mu}g/mg$ and total flavonoid contents varied from 1.60 to 32.69 ${\mu}g/mg$. Contents of polyphenol and flavonoid in ethyl acetate (EtOAc) fraction was found to be extremely high (compared with the other fractions examined). Radical-scavenging activities of methanol extracts and fractions were examined using ${\alpha}$,${\alpha}$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) radicals, 2,2'-azino-bis (3-ethyl-benzthiazoline-6-sulfonic acid) (ABTS) and hydrogen peroxide assay. As a result, ethyl acetate fraction of papaya seed showed the highest radical-scavenging activity in various antioxidant systems. The EtOAc fraction from papaya seed induced QR activity in concentrations of 12.5 to 50 ${\mu}g/ml$ with a maximum of a 3.3-fold induction at 50 ${\mu}g/ml$ of fraction. Therefore, the most effective QR inducer among these fractions can be said to reside in the EtOAc fraction, indicating that strong constituents responsible for QR induction potency in the papaya seed extract are largely contained in the EtOAc fraction.

본 연구에서는 파파야씨의 메탄올 추출몰과 분획물을 이용하여 항산화 활성 및 quinone reductase (QR) 활성을 측정하였다. 파파야씨의 추출물 및 분획물의 총 폴리페놀 함량은 17.74~125.99 ${\mu}g/mg$이며, 총 플라보노이드 함량은 1.60~32.69 ${\mu}g/mg$으로 나타났으며, ethyl acetate (EtOAc) 분획층의 총 폴리페놀 및 플라보노이드 함량이 다른 분획층과 비교했을 때 가장 높은 것으로 나타났다. ${\alpha}$,${\alpha}$-Diphenyl-${\beta}$-picrylhydrazyl (DPPH) radicals, 2,2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and hydrogen peroxide를 이용하여 파파야씨 메탄올 추출물 및 분획물의 항산화 활성을 조사한 결과, EtOAc 분획층에서 가장 높은 free radical 억제능을 보였다. 또한 EtOAc 분획층 12.5~50 ${\mu}g/ml$의 농도에서 QR의 유도활성을 조사한 결과, 50 ${\mu}g/ml$의 농도에서 3.3배 정도의 QR 유도능을 보였다. 따라서 파파야씨의 EtOAc 분획층에 존재하는 물질들은 QR inducer 로써의 역할이 기대된다.

Keywords

References

  1. Ak, T. and İ. Gulcin. 2008. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174, 27-37. https://doi.org/10.1016/j.cbi.2008.05.003
  2. Blois, M. S. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200. https://doi.org/10.1038/1811199a0
  3. Cadenas, E. and K. J. A. Davies. 2000. Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29, 222-230. https://doi.org/10.1016/S0891-5849(00)00317-8
  4. Chai, P. C., L. H. Long, and B. Halliwell. 2003. Contribution of hydrogen peroxide to the cytotoxicity of green tea and red wines. Biochem. Biophys. Res. Commun. 304, 650-654. https://doi.org/10.1016/S0006-291X(03)00655-7
  5. Chung, F. L. 1992. Chemoprevention of lung carcinogenesis by aromatic isothiocyanates. pp. 227-245, In Wattenberg, L. W., M. Lipkin, C. W. Boone, and G. J. Kelloff (eds.), Cancer Chemoprevention. CRC Press, Boca Raton, FL.
  6. Chung, F. L., M. Wang, and S. S. Hecht. 1985. Effects of dietary indoles and isothiocyanates on N-nitrosodimethylamine and 4-(methylnitrosamino)-1-(3-pyridyl)-butanone hydroxylation and DNA methylation in rat liver. Carcinogenesis 6, 539-543. https://doi.org/10.1093/carcin/6.4.539
  7. Chung, H. S., L. C. Chang, S. K. Lee, L. A. Shamon, R. B. van Breemen, R. G. Mehta, N. R. Farnsworth, J. M. Pezzuto, and A. D. Kinghorn. 1999. Flavonoid constituents of Chorizanthe diffusa with potential cancer chemopreventive activity. J. Agric. Food Chem. 47, 36-41. https://doi.org/10.1021/jf980784o
  8. Doll, R. 1990. An overview of the epidemiological evidence linking diet and cancer. Proc. Nutr. Soc. 49, 119-131. https://doi.org/10.1079/PNS19900018
  9. Fahey, J. W. and P. Talalay. 1999. Antioxidant functions of sulforaphane: a potent inducer of phase II detoxication enzymes. Food Chem. Toxicol. 37, 973-979. https://doi.org/10.1016/S0278-6915(99)00082-4
  10. Fenwick, G. R., R. K. Heany, and L. W. Mullin. 1983. Glucosinolates and their breakdown products in foods and food plants. Crit. Rev. Food Sci. Nutr. 18, 123-201.
  11. Folin, O. and W. Denis. 1912. On phosphotungstic-phosphomolybdic compounds as color reagents. J. Biol. Chem. 12, 239-249.
  12. Ford, E. S. and A. Sowell. 1999. Serum R-tocopherol status in the United States population: Findings from the Third National Health and Nutrition Examination Survey. Am. J. Epidemiol. 150, 290-300. https://doi.org/10.1093/oxfordjournals.aje.a010001
  13. Gulcin, İ., E. Bursal, M. H. Sehitoglu, M. Bilsel, and A. C. Goren. 2010. Polyphenol contents and antioxidant activity of lyophilized aqueous extract of propolis from Erzurum, Turkey. Food Chem. Toxicol. 48, 2227-2238. https://doi.org/10.1016/j.fct.2010.05.053
  14. Hertog, M. G., P. M. Sweetnam, A. M. Fehily, P. C. Elwood, and D. Kromhout. 1997. Potentially Anticarcinogenic Secondary Metabolites from Fruit and Vegetables. pp. 313-329, Clarendon Press, Oxford.
  15. Jang, M., L. Cai, G. O. Udeani, K. V. Slowing, C. F. Thomas, C. W. Beecher, H. H. Fong, N. R. Farnsworth, A. D. Kinghorn, R. G. Mehta, R. C. Moon, and J. M. Pezzuto. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science 10, 218-220.
  16. Johns, T., R. L. Mahunnah, P. Sanaya, L. Chaprnan, and T. Ticktin. 1999. Saponins and phenolic content in plant dietary additives of a traditional subsistence community, the Batemi of Ngorongoro District, Tanzania. J. Ethnopharmacol. 66, 1-10. https://doi.org/10.1016/S0378-8741(98)00179-2
  17. Kermanshai, R., B. E. McCarry, J. Rosenfeld, P. S. Summers, E. A. Weretilnyk, and G. J. Sorger. 2001. Benzyl isothiocyanate is the chief or sole anthelmintic in papaya seed extracts. Phytochemistry 57, 427-435. https://doi.org/10.1016/S0031-9422(01)00077-2
  18. Kim, B. R., R. Hu, Y. S. Keum, V. Hebbar, G. Shen, S. S. Nair, and A. N. Kong. 2003. Effects of gluathione on antioxidant responese element-mediated gene expression and apoptosis elicited by sulforaphane. Cancer Res. 63, 7520-7525.
  19. Kuo, S. M. 1996. Antiproliferative potency of structurally distinct dietary flavonoids on human colon cancer cells. Cancer Lett. 110, 41-48. https://doi.org/10.1016/S0304-3835(96)04458-8
  20. Lee, S. O., H. J. Lee, M. H. Yu, H. G. Im, and I. S. Lee. 2005. Total polyphenol contents and antioxidant activities of methanol extracts from edible vegetables produced in Ullung island. Korean J. Food Sci. Technol. 37, 233-240.
  21. Liu, F. 2000. Antioxidative and free radical scavenging activities of selected medicinal herbs. Life Sci. 66, 725-735. https://doi.org/10.1016/S0024-3205(99)00643-8
  22. Marnett, L. J. 2000. Oxyradicals and DNA damage. Carcinogenesis 21, 361-370. https://doi.org/10.1093/carcin/21.3.361
  23. Miranda, C. L., G. L. Aponso, J. F. Stevens, M. L. Deinzer, and D. R. Buhler. 2000. Prenylated chalcones and flavanones as inducers of quinone reductase in mouse Hepa 1c1c7 cells. Cancer Lett. 28, 21-29.
  24. Muller, H. E. 1985. Detection of hydrogen peroxide produced by microorganism on ABTS-peroxidase medium. Zentralbl. Bakteriol. Mikrobiol. Hygiene 259, 151-154.
  25. Nakamura, Y., M. Toshimoto, Y. Murata, Y. Shimoishi, Y. Asai, E. Y. Park, and K. Sato. 2007. Papaya seed represents a rich source of biologically active isothiocyanate. J. Agric. Food Chem. 55, 4407-4413. https://doi.org/10.1021/jf070159w
  26. Nestle, M. 1997. Broccoli sprouts as inducers of carcinogen- detoxifying enzyme systems: clinical, dietary, and policy implications. Proc. Natl. Acad. Sci. USA 14, 11149-11151.
  27. Nieva Moreno, M. I., M. I. Isla, A. R. Sampietro, and M. A. Vattuone. 2000. Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J. Ethnopharmacol. 71, 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  28. OECD (Environment Directorate Joint Meeting of the Chemicals Committee and the Working Party on Chemicals, Pesticides and Biotechnology), 2005. Consensus Document on the Biology of Papaya (Carica papaya) Series on Harmonisation of Regulatory Oversight in Ciotechnology No 33.
  29. Pintao, A. M., M. S. Pais, H. Coley, L. R. Kelland, and J. R. Judson. 1995. In vitro and in vivo antitumor activity of benzyl isothiocyanate a natural product of Tropeolum majus. Planta Med. 61, 233-236. https://doi.org/10.1055/s-2006-958062
  30. Primiano, T., T. R. Sutter, and T. W. Kensler. 1997. Antioxidant inducible gene. Adv. Pharmacol. 38, 293-328.
  31. Prochaska, H. J. and A. B. Santamaria. 1988. Direct measurement of NAD(P)H:quinone reductase from cells cultured in microtiter well: a screening assay for anticarcinogenic enzymes inducers. Anal. Biochem. 169, 328-336. https://doi.org/10.1016/0003-2697(88)90292-8
  32. Prochaska, H. J. and P. Talalay. 1988. Regulatory mechanism of monofunctional and bifunctional anticarcinogenic enzymes in murine liver. Cancer Res. 48, 4682-4776.
  33. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  34. Rice-Evans, C. A., N. J. Miller, and G. Panganga. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2, 152-159. https://doi.org/10.1016/S1360-1385(97)01018-2
  35. Talalay, P. 2000. Chemoprotection against cancer by induction of phase 2 enzymes. Biofactors 12, 5-11. https://doi.org/10.1002/biof.5520120102
  36. Talalay, P., J. W. Fahey, W. D. Holtzclaw, T. Prestera, and Y. Zhang. 1995. Chemoprotection against cancer by phase 2 enzyme induction. Toxicol. Lett. 82-83, 173-179. https://doi.org/10.1016/0378-4274(95)03553-2
  37. Talalay, P. 1989. Mechanisms of induction of enzymes that protect against chemical carcinogenesis. Adv. Enzyme Regul. 28, 237-250. https://doi.org/10.1016/0065-2571(89)90074-5
  38. Tang, C. S. 1971. Benzyl isothiocyanate in papaya fruit. Phytochemistry 12, 117-121.
  39. Tang, C. S., M. M. Syed, and R. A. Hamilton. 1972. Benzyl isothiocyanate in the Caricaceae. Phytochemistry 11, 2531-2535. https://doi.org/10.1016/S0031-9422(00)88531-3
  40. Tanigawa, S., M. Fujii, and D. X. Hou. 2007. Action of Nrf2 and Keap1 in ARE-mediated NQO1 expression by quercetin. Free Radic. Biol. Med. 42, 1690-1703. https://doi.org/10.1016/j.freeradbiomed.2007.02.017
  41. Tookey, H. L., C. H. Van Etten, and M. E. Daxenbichler. 1980. Glucosinolates. pp. 103-142, In Liener, I. E. (ed.), Toxic Constituents of Plant Stuffs.
  42. Uchida, K. 2000. Role of reactive aldehyde in cardiovascular diseases. Free Radic. Biol. Med. 28, 1685-1696. https://doi.org/10.1016/S0891-5849(00)00226-4
  43. Uda, Y., K. R. Price, G. Wklliamson, and M. J. Rhodes. 1997. Induction of the anticarcinogenic marker enzyme, quinone reductase, in murine hepatoma cells in vitro by flavonoids. Cancer Lett. 120, 213-216. https://doi.org/10.1016/S0304-3835(97)00311-X
  44. VanEtten, C., M. E. Daxenbichler, P. H. Williams, and W. F. Klodek. 1976. Glucosinolates and derived products in cruciferous vegetables. Analysis of the edible parts of 22 varieties of cabbage. J. Agric. Food Chem. 24, 452-455. https://doi.org/10.1021/jf60205a049
  45. Wang, M., J. Li, M. Rangarajan, Y. Shao, E. J. La Voie, T. Huang, and C. Ho. 1998. Antioxidative phenolic compounds from sage (Salvia officinalis). J. Agric. Food Chem. 46, 4869-4873. https://doi.org/10.1021/jf980614b
  46. Wattenberg, L. W. 1985. Chemoprevention of cancer. Cancer Res. 45, 1-8. https://doi.org/10.1016/S0065-230X(08)60265-1
  47. Wattenberg, L. W. 1977. Inhibition of carcinogenic effects of polycyclic hydrocarbons by benzyl isothiocyanate and related compounds. J. Natl. Cancer Inst. 58, 395-398.
  48. Wattenberg, L. W. 1981. Inhibition of carcinogen induced neoplasia by sodium cyanate, tert-butyl isocyanate and benzyl isothiocyanate administered subsequent to carcinogen exposure. Cancer Res. 41, 2991-2994.
  49. Wattenberg, L. W. 1983. Inhibition of neoplasia by minor dietary constituents. Cancer Res. 43, 2448s-2551s.
  50. Wiart, C. 2006. Family Caricaceae. In Medicinal Plants of the Asia-Pacific: Drugs for the Future? pp. 183-186, World Scientific Publishing Co. Pte. Ltd., Singapore.
  51. Xie, T., M. Belinsky, Y. Xu, and A. K. Jaiswal. 1995. AREand TRE-mediated regulation of gene expression. J. Biol. Chem. 270, 6894-6900. https://doi.org/10.1074/jbc.270.12.6894
  52. Zhang, Y., P. Talalay, C. G. Cho, and G. H. Posner. 1992. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure. Proc. Natl. Acad. Sci. USA 15, 2399-2403.
  53. Zhang, Y. and P. Talalay. 1994. Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res. 54, 1976-1981.

Cited by

  1. subtropical fruits vol.22, pp.4, 2015, https://doi.org/10.11002/kjfp.2015.22.4.577