DOI QR코드

DOI QR Code

Evaluation of Rutting Resistance and Moisture Sensitivity of Warm-Mix Asphalt Mixtures Using the Model Mobile Loading Simulator(MMLS3)

소형 포장 가속시험기를 이용한 중온 아스팔트 혼합물의 소성변형저항성 및 수분민감도 평가

  • 이재준 (한국건설기술연구원 기반시설연구본부 도로연구실) ;
  • 김용주 (한국건설기술연구원 기반시설연구본부 도로연구실) ;
  • 양성린 (한국건설기술연구원 기반시설연구본부 도로연구실) ;
  • 권수안 (한국건설기술연구원 기반시설연구본부 도로연구실) ;
  • 황성도 (한국건설기술연구원 기반시설연구본부 도로연구실)
  • Received : 2010.12.22
  • Accepted : 2011.05.20
  • Published : 2011.06.15

Abstract

Warm-mix asphalt(WMA) technology has been developed to allow asphalt mixtures to be produced and compacted at a significantly lower temperature. The WMA technology was identified as one of means to lower emissions for $CO_2$ and has been spread so quickly in the world. Recently, two innovative WMA additives has been developed to reduce mixing and paving temperatures applied in asphalt paving process in Korea. Since the first public demonstration project in 2008, many WMA projects have successfully been constructed in national highways. In 2010, the WMA field trial was conducted on new national highway construction under Dae-Jeon Regional Construction Management Administration. The two different WMA loose mixtures(WMA and WMA-P) and a HMA mixture were collected at the asphalt plant to evaluate their mechanical performance in the laboratory. The Third-scale Model Mobile Loading Simulator(MMLS3) was adopted to evaluate rutting resistance and moisture damage under different traffic and environmental conditions. In this study, plant-produced WMA mixtures using two WMA additives along with the conventional hot mix asphalt(HMA) mixtures were evaluated with respect to their rutting resistance and moisture susceptibility using MMLS3. Based on the limited laboratory test results, plant-produced WMA mixtures are superior to HMA mixtures in rutting resistance and the moisture susceptibility. The WMA additive was effective for producing and compacting the mixture at $30^{\circ}C$ lower than the temperature for the HMA mixture.

아스팔트 혼합물을 중온에서 생산하여 다짐할 수 있는 중온 아스팔트 기술이 개발되었다. 중온 아스팔트 기술은 유해가스를 줄일 수 있어 친환경적 아스팔트 포장 기술로 인정받고 있으며 전 세계적으로 그 사용량이 점점 증가하고 있다. 최근, 국내에서도 순수 국산화 기술로 중온 아스팔트 혼합물용 첨가제를 개발하여 이에 대한 품질평가와 중온 아스팔트 혼합물에 대한 성능평가를 수행하고 있다. 2008년도부터 다수의 신설 국도 구간에 자체 개발한 중온 아스팔트 첨가제를 사용하여 생산한 중온 아스팔트 혼합물을 이용하여 시험포장을 성공적으로 완료하였다. 2010년 대전지방국도관리청 산하 신설 국도포장의 중간층에 두 종류에 중온화 첨가제(일반 중온화 첨가제(WMA), 폴리머 개질 중온화 첨가제(WMA-P))를 사용한 두 종류에 중온 아스팔트 혼합물과 한 종류에 가열 아스팔트 혼합물을 각각 생산하여 시험포장을 완료하였으며 시함포장에 사용한 혼합물을 사용하여 본 연구를 수행하였다. 현장 아스팔트 플랜트에서 생산된 두 종류의 중온 아스팔트 혼합물(WMA, WMA-P)과 일반 가열 아스팔트 혼합물(HMA)을 각각 채취하였으며 실내에서 실제 도로에서 발생하는 차량하중과 환경을 모사할 수 있는 소형 포장 가속시험기(MMLS3)를 사용하여 아스팔트 혼합물의 소성변형 저항성과 수분민감도를 비교 평가하였다. 소형 포장 가속 시험결과 현장 아스팔트 플랜트에서 생산한 중온 아스팔트 혼합물은 가열 아스팔트 혼합물보다 우수한 소성변형저항성과 수분민감도를 보여 주었다. 순수 국산화 기술로 중온 아스팔트 혼합물용 첨가제는 가열 아스팔트 혼합물 보다 낮은 온도에서 중온 아스팔트 혼합물을 생산하고 다짐하는데 효과적인 것으로 평가되었다.

Keywords

References

  1. Acott, M. (2009) "Testimony of Mike Acott, President of NAPA, Hearing on the Role of Research in Addressing Climate Change in Transportation Infrastructure before the Subcommittee on Technology and Innovation."National Asphalt Pavement Association (NAPA).
  2. Advanced Asphalt Technologies, LLC. (2008) "NCHRP Report 9-43: Mix Design Practices for Warm Mix Asphalt." Interim Report, TRB, National Research Council, Washington, D. C.
  3. Anderson, R. M., Baumgardner, G., May, R., and Reinke, G. (2008) "NCHRP 9-47: Engineering Properties, Emissions, and Field Performance of Warm Mix Asphalt Technologies." Interim Report, TRB, National Research Council, Washington, D.C.
  4. Aschenbrener, T. (1992). "Comparison of Results Obtained from the French Rutting Tester With Pavements of Known Field Performance." Report No. CDOT-DTD-R-92-11, Colorado Department of Transportation.
  5. Aschenbrener, T. (1995). "Evaluation of Hamburg Wheel-Tracking Device to Predict Moisture Damage in Hot Mix Asphalt." In Transportation Research Record 1492, TRB, National Research Council, Washington, D.C., pp. 193-201.
  6. Collins, R., H. Shami, and J. S. Lai. (1996) "Use of Georgia Loaded Wheel Tester To Evaluate Rutting of Asphalt Samples Prepared by Superpave Gyratory Compactor." In Transportation Research Record 1545, TRB, National Research Council, Washington, D.C., pp. 161-168. https://doi.org/10.3141/1545-21
  7. Epps, A.L. (2001), Performance prediction with the MMLS 3 at WesTrack Report Number 2134-S. Texas Transportation Institute. The Texas A & M University, pp 4.
  8. Hall, K. D. and Williams, S. G. (1999). "Effects of Specimen Configuration and Compaction Method on Performance in Asphalt Concrete Wheel- Tracking Tests."Presented to the Canadian Technical Asphalt Association.
  9. Hugo F., Smit A. de F. and Epps A. (1999). "A Case Study of Model APT In The Field." Proceedings of the First International Conference on Accelerated Pavement Testing, Reno, Nevada.
  10. Kruger, J., Hartman, A. M., and Loots, H. (2004), "Towards Developing a Test Protocol for Field permanent deformation Performance Evaluation using the MMLS3." Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa (CAPSA'04).
  11. Kvasnak, A., Powell, B. and West, R. (2010) National Warm Mix Asphalt Certification. National Center for Asphalt Technology.
  12. Lai, J. S. (1986). "Evaluation of Rutting Characteristics of Asphalt Mixes Using Loaded Wheel Tester." Project No. 8609, Georgia Department of Transportation.
  13. Miller, T., K. Ksaibati, and M. Farrar. (1995). "Utilizing the Georgia Loaded-Wheel Tester to Predict Rutting." Presented at the 74th Annual Meeting of the Transportation Research Board, Washington, D.C.
  14. Muller, J. and Hugo, F. (2009), "MMLS 3 Traffic Simulator Operation Manual, MLS Test Systems, 19." Elbertha Road Die Boord 6700 Stellenbosch, South Africa.
  15. Rossmann, D., (2008) Towards Development of an International Standard Test Protocol-Method for evaluation of permanent deformation and susceptibility to moisture damage of bituminous road paving mixtures using the Model Mobile Load Simulator (MMLS3)
  16. Shami, H. I., J. S. Lai, J. A. D'Angelo, and T. P. Harmon. (1997) "Development of Temperature Effect Model for Predicting Rutting of Asphalt Mixtures Using Georgia Loaded Wheel Tester." In Transportation Research Record 1590, TRB, National Research Council, Washington, D.C., pp. 17-22.
  17. Stuart, K. D. and R. P. Izzo. (1995) "Correlation of Superpave G*/sin $\delta$ with Rutting Susceptibility from Laboratory Mixture Tests." In Transportation Research Record 1492, TRB, National Research Council, Washington, D.C., pp. 176-183.
  18. Smit A. dF., Walubita L., Jenkins K. and Hugo F. (2002). "The Model Mobile Load Simulator As a Tool for Eavluating Asphalt Performance Under Wet Condition." Proceeding of the Ninth International Conference on Asphalt Pavements, Copenhagen.
  19. Walubita, L.F., Hugo, F., Epps Martin, A. (2002). "Indirect Tensile Fatigue Performance of Asphalt After MMLS Trafficking Under Different Environmental Conditions." Journal of the South African Institution of Civil Engineering, Johannesburg, South Africa, Vol. 44, Number 3.
  20. West, R. C., Page, G. C., and Murphy, K. H. (1991) "Evaluation of the Loaded Wheel Tester." Research Report FL/DOT/SMO/91-391, Florida Department of Transportation.
  21. Williams, C. R. and B. D. Prowell. (1999). "Comparison of Laboratory Wheel- Tracking Test Results to WesTrack Performance." Presented at the 78th Annual Meeting of the Transportation Research Board, Washington, D.C.