DOI QR코드

DOI QR Code

MEAN SQUARE STABILITY IN A MODIFIED LESLIE-GOWER AND HOLLING-TYPE II PREDATOR-PREY MODEL

  • Received : 2010.03.12
  • Accepted : 2010.08.17
  • Published : 2011.05.30

Abstract

Of concern in the paper is a Holling-Tanner predator-prey model with modified version of the Leslie-Gower functional response. Dynamical behaviours such as stability, permanence and Hopf bifurcation have been carried out deterministically. Using the normal form theory and center manifold theorem, the explicit formulae determining the stability and direction of Hopf bifurcation have been derived. The deterministic model is extended to a stochastic one by perturbing the growth equation of prey and predator by white and colored noises and finally the mean square stability of the stochastic model systems is investigated analytically. An extensive quantitative analysis has been performed based on numerical computation so as to validate the applicability of the proposed mathematical model.

Keywords

References

  1. V. N. Afanasev, V. B. Kolmanowskii and V. R. Nosov, Mathematical Theory of Control Systems Design (Dordrecht: Kluwer), 1996.
  2. M. A. Aziz-Alaoui, Study of a Leslie-Gower-type tritrophic population, Chaos Solitons Fractals. 14(2002), 1275-1293. https://doi.org/10.1016/S0960-0779(02)00079-6
  3. M. A. Aziz-Alaoui and M. Daher Okiye, Boundedness and global stability for a predator-prey model with modi?ed Leslie-Gower and Holling-type II schemes, Appl. Math. Lett. 16(2003), 1069-1075. https://doi.org/10.1016/S0893-9659(03)90096-6
  4. M. C. Baishya and C. G. Chakrabarti, Non-equilibrium fluctuation in Lotka-Volterra system Bull. Math. Biol. 49(1987), 125-131.
  5. M. Bandyopadhyay and C. G. Chakrabarti, Deterministic and stochastic analysis of a nonlinear prey-predator system J. Biol. Syst. 11(2003), 161-172. https://doi.org/10.1142/S0218339003000816
  6. E. Beretta, V. B. Kolmanowskii and L. Shaikhet, Stability of epidemic model with time delays influenced by stochastic perturbations Math. Comput. Simul. 45(1998), 269-277. https://doi.org/10.1016/S0378-4754(97)00106-7
  7. G. Birkhoff and G. C. Rota, Ordinary Differential Equations, Ginn, Boston, 1962.
  8. M. Carletti, On the stability properties of a stochastic model for phage-bacteria interaction in open marine environment Math. Biosci. 175(2002), 117-131. https://doi.org/10.1016/S0025-5564(01)00089-X
  9. I. I. Gikhman and A. V. Skorokhod, The Theory of Stochastic Process-I (Berlin: Springer), 1979.
  10. B. Hassard, N. Kazarinoff and Y. Wan, Theory and applications of Hopf bifurcation, Cambridge (MA), Cambridge University Press, 1981.
  11. D. J. Higham, X. Mao and A. M. Stuart, Strong convergence of numerical methods for nonlinear stochastic differential equations, Mathematics Research Report 13(2001), University of Strathclyde, Glasgow.
  12. C. S. Holling, The functional response of predator to prey density and its role in mimicry and population regulation, Mem Ent Sec Can. 45(1965), 1-60.
  13. S. B. Hsu and T. W. Huang, Global stability for a class of predator-prey system, SIAM J. Appl. Math. 55(3)(1995), 763-783. https://doi.org/10.1137/S0036139993253201
  14. A. Korobeinikov, A Lyapunov function for Leslie-Gower predator-prey models, Appl. Math. Lett. 14(2002), 697-699.
  15. M. Kot, Elements of Mathematical Ecology, Cambridge University Press, New York, 2001.
  16. P. H. Leslie, Some further notes on the use of matrices in population mathematics, Biometrica. 35(1948), 213-245.
  17. P. H. Leslie and J. C. Gower, The properties of a stochastic model for the predator-prey type of interaction between two species, Biometrica. 47(1960), 219-234.
  18. C. Letellier and M. A. Aziz-Alaoui, Analysis of the dynamics of a realistic ecological model, Chaos Solitons Fractals. 13(2002), 95-107. https://doi.org/10.1016/S0960-0779(00)00239-3
  19. C. Letellier, L. Aguirr, J. Maquet and M.A. Aziz-Alaoui, Should all the species of a food chain be counted to investigate the global dynamics, Chaos Solitons Fractals. 13(2002), 1099-1113. https://doi.org/10.1016/S0960-0779(01)00116-3
  20. Maynard and J. Smith, The theory of games and the evolution of animal conflicts J. Theor. Biol. 47(1974), 209-221. https://doi.org/10.1016/0022-5193(74)90110-6
  21. R. M. May, Stability and Complexity in Model Ecosystems, Princeton University Press, New Jersey, 2001.
  22. J. D. Murray, Mathematical Biology, vol. I, Springer-Verlag, Berlin, 2003.
  23. R. M. Nisbet and W. S. C. Gurney, Modelling Fluctuating Populations, John Wiley and Sons, 1982.
  24. E. C. Pielou, An Introduction to Mathematical Ecology, Wiley-Interscience, New York, 1969.
  25. E. Renshaw, Modelling Biological Population in Space and Time, Cambridge University Press, Cambridge, 1995.
  26. M. L. Rosenzweig and R. M. Arthur, Graphical representation and stability conditions of predatorprey interactions, Amer. Nat. 47(1963), 209-223.
  27. M. L. Rosenzweig, Paradox of enrichment: destabilization of exploitation ecosystems in ecological time, Science. 171(1969), 385-387.
  28. T. Saha and M. Bandyopadhyay, Effect of environmental fluctuation on a Autotroph-Herbivore model, Int. J. Math. Math. Sci. 68(2004), 3703-3716.
  29. T. Saha and M. Bandyapadhyay, Dynamical analysis oof a delayed ratio-dependent prey-predator model within fluctuating environment, Appl. Math. Comput. 196(2008), 458-478 https://doi.org/10.1016/j.amc.2007.06.017
  30. P. K. Tapaswi and A. Mukhopadhyay, Effects of environmental fluctuation on plankton allelopathy, J. Math. Biol. 39(1999), 39-58 https://doi.org/10.1007/s002850050162
  31. M. Turelli, Stochastic community theory: A partially guided tour, in \Mathematical Ecology" (T. G. Hallam and S. A. Levin, Eds.), Springer-Verlag, Berlin/Heidelberg. 1986.
  32. R. K. Upadhyay and V. Rai, Why chaos is rarely observed in natural populations, Chaos Solitons Fractals 8(1997), 1933-1939. https://doi.org/10.1016/S0960-0779(97)00076-3