DOI QR코드

DOI QR Code

Helicobacterpylori에 감염된 위상피세포에서 14-3-3 결합 단백질의 변화

14-3-3-Associated Proteins in Helicobacter pylori-Infected Gastric Epithelial Cells

  • 투고 : 2011.06.21
  • 심사 : 2011.06.27
  • 발행 : 2011.06.30

초록

14-3-3 is a highly conserved, ubiquitously expressed protein family. It associates with diverse cellular proteins through its specific phosphoserine/phosphothreonine-binding activity and thus contributes to the regulation of crucial cellular processes such as metabolism, signal transduction, cell-cycle control, apoptosis, protein trafficking, transcription and stress responses. This study aims to determine changes in levels of 14-3-3 isoforms and 14-3-3 - associated proteins in Helicobacter pylori(H. pylori)-infected gastric epithelial AGS cells. AGS cells were stimulated with H. pylori(NCTC 11637) at the ratio of 300:1(bacterium:cell). Western blot analysis revealed that 14-3-3 $\sigma$ was elevated at 3 hr after H. pylori treatment. Other isoforms were not significantly affected by H. pylori infection. Using immunoprecipitation to 14-3-3 $\sigma$, followed by proteomic analysis, we found that S phase kinase associated protein isoform 2 bound to 14-3-3 $\sigma$ has increased. In contrast, three proteins (DEAD-box polypeptide 3, heterogeneous nuclear ribonucleoprotein H2 and WD repeat-containing protein isoform 1) bound to 14-3-3 decreased by H. pylori infection. Our results suggest that 14-3-3 may play an important regulatory role in H. pylori-induced signal transduction in gastric epithelial cells.

키워드

참고문헌

  1. Backert S, Gressmann H, Kwok T, Zimny-Arndt U, König W, Jungblut PR, Meyer TF. 2005. Gene expression and protein profiling of AGS gastric epithelial cells upon infection with Helicobacter pylori. Proteomics 5:3902-3918 https://doi.org/10.1002/pmic.200401240
  2. Bagga PS, Arhin GK, Wilusz J. 1998. DSEF-1 is a member of the hnRNP H family of RNA-binding proteins and stimulates pre-mRNA cleavage and polyadenylation in vitro. Nucleic Acids Res 26:5343-5350 https://doi.org/10.1093/nar/26.23.5343
  3. Blaser MJ. 1999. Hypothesis: the changing relationships of Helicobacter pylori and humans: implications for health and disease. J Infect Dis 179:1523-1530 https://doi.org/10.1086/314785
  4. Bornstein G, Bloom J, Sitry-Shevah D, Hershko A. 2003. Role of the SCFSkp2 ubiquitin ligase in the degradation of p21Cip1 in S phase. J Biol Chem 278:25752-25757 https://doi.org/10.1074/jbc.M301774200
  5. Botlagunta M, Vesuna F, Mironchik Y, Raman A, Raman V. 2008. Oncogenic role of DDX3 in breast cancer biogenesis. Oncogene 27:3912-3922 https://doi.org/10.1038/onc.2008.33
  6. Chan CH, Ko CC, Chang JG, Chen SF, Wu MS, Lin JT, Chow LP. 2006. Subcellular and functional proteomic analysis of the cellular responses induced by Helicobacter pylori. Mol Cell Proteomics 5:702-713
  7. Chang PC, Chi CW, Chau GY, Li FY, Tsai YH, Wu JC, Wu Lee YH. 2006. DDX3, a DEAD box RNA helicase, is deregulated in hepatitis virusassociated hepatocellular carcinoma and is involved in cell growth control. Oncogene 25:1991-2003 https://doi.org/10.1038/sj.onc.1209239
  8. Chao CH, Chen CM, Cheng PL, Shih JW, Tsou AP, Wu Lee YH. 2006. DDX3, a DEAD box RNA helicase with tumor growth-suppressive property and transcriptional regulation activity of the p21waf1/cip1 promoter, is a candidate tumor suppressor. Cancer Res 66:6579-6588 https://doi.org/10.1158/0008-5472.CAN-05-2415
  9. Chen CD, Kobayashi R, Helfman DM. 1999. Binding of hnRNP H to an exonic splicing silencer is involved in the regulation of alternative splicing of the rat h-tropomyosin gene. Genes Dev 13:593-606 https://doi.org/10.1101/gad.13.5.593
  10. Cho JJ. 1999. Prevalence of Helicobacter pylori infection in patients of peptic ulcer among Korean. Korean J Family Med 20: 1084-1090
  11. Chou MY, Rooke N, Turck CW, Black DL. 1999. hnRNP H is a component of a splicing enhancer complex that activates a c-src alternative exon in neuronal cells. Mol Cell Biol 19: 69-77 https://doi.org/10.1128/MCB.19.1.69
  12. Dreyfuss G, Matunis MJ, Pinol-Roma S, Burd CG. 1993. hnRNP proteins and the biogenesis of mRNA. Annu Rev Biochem 62:289-321 https://doi.org/10.1146/annurev.bi.62.070193.001445
  13. Eguchi H, Herschenhous N, Kuzushita N, Moss SF. 2003. Helicobacter pylori increases proteasome-mediated degradation of p27kip1 in gastric epithelial cells. Cancer Res 63:4739-4746
  14. Gao D, Inuzuka H, Tseng A, Wei W. 2009. Akt finds its new path to regulate cell cycle through modulating Skp2 activity and its destruction by APC/Cdh1. Cell Division 4:11 https://doi.org/10.1186/1747-1028-4-11
  15. Garneau D, Revil T, Fisette JF, Chabot B. 2005. Heterogeneous nuclear ribonucleoprotein F/H proteins modulate the alternative splicing of the apoptotic mediator Bcl-x. J Biol Chem 280: 22641-22650 https://doi.org/10.1074/jbc.M501070200
  16. Grabowski PJ. 2004. A molecular code for splicing silencing: configurations of guanosine-rich motifs. Biochem Soc Trans 32:924-927 https://doi.org/10.1042/BST0320924
  17. Gustafson EA, Wessel GM. 2010. DEAD-box helicases: Posttranslational regulation and function. Biochem Biophys Res Commun 395:1-6 https://doi.org/10.1016/j.bbrc.2010.02.172
  18. Harper JW. 2001. Protein destruction: adapting roles for Cks proteins. Curr Biol 11:R431-435 https://doi.org/10.1016/S0960-9822(01)00253-6
  19. Hastings ML, Wilson CM, Munroe SH. 2001. A purine-rich intronic element enhances alternative splicing of thyroid hormone receptor mRNA. RNA 7:859-874 https://doi.org/10.1017/S1355838201002084
  20. He C, Schneider R. 2006. 14-3-3${\delta}$ is a p37 AUF1-binding protein that facilitates AUF1 transport and AU-rich mRNA decay. EMBO 25:3823-3831 https://doi.org/10.1038/sj.emboj.7601264
  21. Hellen CU, Sarnow P. 2001. Internal ribosome entry sites in eukaryotic mRNA molecules. Genes Dev 15:1593-1612 https://doi.org/10.1101/gad.891101
  22. Holzmann K, Korosec T, Gerner C, Grimm R, Sauermann G. 1997. Identification of human common nuclear-matrix proteins as heterogeneous nuclear ribonucleoproteins H and H' by sequencing and mass spectrometry. Eur J Biochem 244: 479-486 https://doi.org/10.1111/j.1432-1033.1997.00479.x
  23. Honore B, Rasmussen HH, Vorum H, Dejgaard K, Celis JE. 1995. Heterogeneous nuclear ribonucleoproteins H, H', and F are members of a ubiquitously expressed subfamily of related but distinct proteins encoded by genes mapping to different chromosomes. J Biol Chem 270:28780-28789 https://doi.org/10.1074/jbc.270.48.28780
  24. Jankowsky E, Gross CH, Shuman S, Pyle AM. 2001. Active disruption of an RNA-protein interaction by a DExH/D RNA helicase. Science 291:121-125 https://doi.org/10.1126/science.291.5501.121
  25. Jones DH, Ley S, Aitken A. 1995. Isoforms of 14-3-3 protein can form homo- and heterodimers in vivo and in vitro: implications for function as adapter proteins. FEBS Lett 368:55-58 https://doi.org/10.1016/0014-5793(95)00598-4
  26. Kamura T, Hara T, Kotoshiba S, Yada M, Ishida N, Imaki H, Hatakeyama S, Nakayama K, Nakayama KI. 2003. Degradation of p57Kip2 mediated by SCFSkp2-dependent ubiquitylation. Proc Natl Acad Sci USA 100:10231-10236 https://doi.org/10.1073/pnas.1831009100
  27. Kim SS, Meitner P, Konkin TA, Cho YS, Resnick MB, Moss SF. 2006. Altered expression of Skp2, c-Myc and p27 proteins but not mRNA after H. pylori eradication in chronic gastritis. Mod Pathol 19:49-58 https://doi.org/10.1038/modpathol.3800476
  28. Krecic AM, Swanson MS. 1999. HnRNP complexes: composition, structure, and function. Curr Opin Cell Biol 11:363-371 https://doi.org/10.1016/S0955-0674(99)80051-9
  29. Lee SH, McCormick F. 2005. Down regulation of Skp2 and p27/ Kip1 synergistically induces apoptosis in T98G glioblastoma cells. J Mol Med 83:296-307 https://doi.org/10.1007/s00109-004-0611-7
  30. Lee CS, Dias AP, Jedrychowski M, Patel AH, Hsu JL, Reed R. 2008. Human DDX3 functions in translation and interacts with the translation initiation factor eIF3. Nucleic Acids Research 36:4708-4718 https://doi.org/10.1093/nar/gkn454
  31. Lesbros-Pantoflickova D, Corthésy-Theulaz I, Blum AL. 2007. Helicobacter pylori and probiotics. J Nutr 137:812S-818S
  32. Li D, Roberts R. 2001. WD-repeat proteins: structure characteristics, biological function, and their involvement in human diseases. Cell Mol Life Sci 58:2085-2097 https://doi.org/10.1007/PL00000838
  33. Lim JW, Kim H, Kim JM, Kim JS, Jung HC, Kim KH. 2004. Cellular stress-related protein expression in Helicobacter pylori-infected gastric epithelial AGS cells. Int J Biochem Cell Biol 36:1624-1634 https://doi.org/10.1016/j.biocel.2004.01.018
  34. Lin H, Wang G, Chen Z, Teruya-Feldstein J, Pandolfi PP. 2009. Phosphorylation-dependent regulation cytosolic localization and oncogenic function of Skp2 by Akt/PKB. Nat Cell Biol 11:420-432 https://doi.org/10.1038/ncb1849
  35. Linder P, Lasko PF, Ashburner M, Leroy P, Nielsen PJ, Nishi K. 1989. Birth of the D-E-A-D box. Nature 337:121-122 https://doi.org/10.1038/337121a0
  36. Linder P. 2003. Yeast RNA helicases of the DEAD-box family involved in translation initiation. Biol Cell 95:157-167 https://doi.org/10.1016/S0248-4900(03)00032-7
  37. Liu J, Beqaj S, Yang Y, Honore B, Schuger L. 2001. Heterogeneousnuclear ribonucleoprotein-H plays a supressive role in visceral myogenesis. Mech Dev 104:79-87 https://doi.org/10.1016/S0925-4773(01)00377-X
  38. Mahe D, Mahl P, Gattoni R, Fischer N, Mattei MG, Stevenin J, Fuchs JP. 1997. Cloning of human 2H9 heterogeneous nuclear ribonucleoproteins. Relation with splicing and early heat shock-induced splicing arrest. J Biol Chem 272:1827-1836 https://doi.org/10.1074/jbc.272.3.1827
  39. Masuda TA, Inoue H, Sonoda H, Mine S, Yoshikawa Y, Nakayama K, Nakayama K, Mori M. 2002. Clinical and biological significance of S-phase kinase-associated protein 2 (Skp2) gene expression in gastric carcinoma: modulation of malignant phenotype by Skp2 overexpression, possibly via p27 proteolysis. Cancer Res 62:3819-3825
  40. Miehlke S, Yu J, Schuppler M, Frings C, Kirsch C, Negraszus N, Morgner A, Stolte M, Ehninger G, Bayerdorffer E. 2001. Helicobacter pylori vacA, iceA, and cagA status and pattern of gastritis in patients with malignant and benign gastroduodenal disease. Am J Gastroenterol 96:1008-13 https://doi.org/10.1111/j.1572-0241.2001.03685.x
  41. Moore B, Perez V. 1967. Specific Acid Proteins in the Nervous System. Prentice Hall. Inc
  42. Morgan DO. 1997. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu Rev Cell Dev Biol 13:261-291 https://doi.org/10.1146/annurev.cellbio.13.1.261
  43. Nakayama KI, Hatakeyama S, Nakayama K. 2001. Regulation of the cell cycle at the G1/S transition by proteolysis of cyclin E and p27Kip1. Biochem Biophys Res Commun 282:853-860 https://doi.org/10.1006/bbrc.2001.4627
  44. NIH Consensus Conference. 1994. Helicobacter pylori in peptic ulcer disease. NIH consensus development panel on Helicobacter pylori in peptic ulcer disease. JAMA 272:65-69 https://doi.org/10.1001/jama.1994.03520010077036
  45. Philipp-Staheli J, Payne SR, Kemp CJ. 2001. p27(Kip1): regulation and function of a haploin sufficient tumor suppressor and its misregulation in cancer. Exp Cell Res 264:148-168 https://doi.org/10.1006/excr.2000.5143
  46. Poon IK, Jans DA. 2005. Regulation of nuclear transport: central role in development and transformation? Traffic 6:173-186 https://doi.org/10.1111/j.1600-0854.2005.00268.x
  47. Proikas-Cezanne T, Waddell S, Gaugel A, Frickey T, Lupas A, Nordheim A. 2004. WIPI-1a (WIPI49), a member of the novel 7-bladed WIPI protein family, is aberrantly expressed in human cancer and is linked to starvation-induced autophagy. Oncogene 23:9314-9325 https://doi.org/10.1038/sj.onc.1208331
  48. Richter JD, Sonenberg N. 2005. Regulation of cap-dependent translation by eIF4E inhibitory proteins. Nature 433:477-480 https://doi.org/10.1038/nature03205
  49. Rosner A, Rinkevich B. 2007. The DDX3 subfamily of the DEAD box helicases: divergent roles as unveiled by studying different organisms and in vitro assays. Curr Med Chem 14:2517-2525 https://doi.org/10.2174/092986707782023677
  50. Santoro MM, Gaudino G, Marchisio PC. 2003. The MSP receptor regulates ${\alpha}$6${\beta}$4/${\alpha}$3${\beta}$1 integrins via 14-3-3 proteins in keratinocyte migration. Dev Cell 5:257-271 https://doi.org/10.1016/S1534-5807(03)00201-6
  51. Sekiguchi T, Kurihara Y, Fukumura J. 2007. Phosphorylation of threonine 204 of DEAD-box RNA helicase DDX3 by cyclin B/cdc2 in vitro. Biochem Biophys Res Commun 356:668-673 https://doi.org/10.1016/j.bbrc.2007.03.038
  52. Shih JW, Tsai TY, Chao CH, Wu Lee YH. 2007. Candidate tumor suppressor DDX3 RNA helicase specifically represses cap-dependent translation by acting as an eIF4E inhibitory protein. Oncogene 27:700-714
  53. Sivam G. 2001. Protection against Helicobacter pylori and other bacterial infections by garlic. J Nutr 131:1106S-11085
  54. Smith TF, Gaitatzes C, Saxena K, Neer EJ. 1999. The WD repeat: a common architecture for diverse functions. Trends Biochem Sci 24:181-185 https://doi.org/10.1016/S0968-0004(99)01384-5
  55. Soulat D, Burckstumer T, Westermayer S, Goncalves A, Bauch A, Stefanovic A, Superti-Furga G. 2008. The DEAD-box helicase DDX3X is a critical component of the TANKbinding kinase 1-dependent innate immune response. EMBO 27:2135-2146 https://doi.org/10.1038/emboj.2008.126
  56. Tanner NK, Cordin O, Banroques J, Doere M, Linder P. 2003. The Q motif: a newly identified motif in DEAD box helicases may regulate ATP binding and hydrolysis. Mol Cell 11:127-138 https://doi.org/10.1016/S1097-2765(03)00006-6
  57. Tsai HF, Hsu PN. 2010. Interplay between Helicobacter pylori and immune cells in immune pathogenesis of gastric inflammation and mucosal pathology. Cell Mol Immunol 4: 255-259
  58. Tsujii M, Kawano S, Tsuji S, Fusamoto H, Kamada T, Sato N. 1992. Mechanism of gastric mucosal damage induced by ammonia. Gastroenterology 102:1881-1888
  59. Uhart M, Iglesias AA, Bustos DMJ. 2011. Structurally constrained residues outside the binding motif are essential in the interaction of 14-3-3 and phosphorylated partner. Mol Biol 406:552-557 https://doi.org/10.1016/j.jmb.2010.12.043
  60. van Nocker S, Ludwig P. 2003. The WD-repeat protein superfamily in Arabidopsis: conservation and divergence in structure and function. BMC Genom 4:50 https://doi.org/10.1186/1471-2164-4-50
  61. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC. 1997. The structural basis for 14-3-3: phosphopeptide binding specificity. Cell 91:961-971 https://doi.org/10.1016/S0092-8674(00)80487-0
  62. Yaffe MB. 2002. How do 14-3-3 proteins work? Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 513:53-57 https://doi.org/10.1016/S0014-5793(01)03288-4
  63. Yim JY, Kim N, Choi SH, Kim YS, Cho KR, Kim SS. 2007. Seroprevalence of Helicobacter pylori in South Korea. Helicobacter 12:333-340 https://doi.org/10.1111/j.1523-5378.2007.00504.x
  64. Yoshida T, Kokura K, Makino Y, Ossipow V, Tamura T. 1999. Heterogeneous nuclear RNA-ribonucleoprotein F binds to DNA via an oligo(dG)-motif and is associated with RNA polymerase II. Genes Cells 4:707-719 https://doi.org/10.1046/j.1365-2443.1999.00295.x
  65. You LR, Chen CM, Yeh TS, Tsai TY, Mai RT, Lin CH. 1999. Hepatitis C virus core protein interacts with cellular putative RNA Helicase. J Virol 73:2841-2853
  66. Zhang H, Kobayashi R, Galaktionov K, Beach D. 1995. p19Skp1 and p45Skp2 are essential elements of the cyclin A-CDK2 S phase kinase. Cell 82:915-25 https://doi.org/10.1016/0092-8674(95)90271-6