DOI QR코드

DOI QR Code

해수면에 의해 반사된 태양복사 성분의 특성: 남한의 제주도 사례

Properties of Solar Radiation Components Reflected by the Sea Surface: - A Case of Jeju Island, South Korea -

  • ;
  • ;
  • 황수진 (부산대학교 지구과학교육과) ;
  • 김해동 (계명대학교 지구환경학과)
  • Fumichika, Uno (Graduate School of Life and Environmental Science, University of Tsukuba) ;
  • Hayashi, Yousay (Graduate School of Life and Environmental Science, University of Tsukuba) ;
  • Hwang, Soo-Jin (Department of Earth Science Education, Pusan National University) ;
  • Kim, Hae-Dong (Department of Global Environment, Keimyung University)
  • 투고 : 2011.05.24
  • 심사 : 2011.06.24
  • 발행 : 2011.06.30

초록

해안지대의 에너지평형을 결정짓는 복사성분 가운데 주변 바다로부터 반사되는 양을 무시할 수 없지만 아직 해수면 반사성분을 추정할 수 있는 방법이 확립되지 못한 실정이다. 본 연구에서는 새로운 추정방법을 고안하여 해수면 반사성분의 지리적, 계절적 분포양상을 모의하였으며, 그 결과 영향권의 면적과 수광량 모두 동지 무렵에 가장 크고 하지 무렵에 가장 적다는 것을 밝혔다. 이 방법을 제주도 한라산 사면에 적용할 경우 동지 무렵의 해수면 반사영향권은 $182.3km^2$이고 하루 누적 수광량은 $0.41MJ\;m^{-2}$ 이었다. 순간값의 경우 일 중 시간에 따라 전체 일사수광량 가운데 해수면 반사성분이 최대 33%를 차지하였다. 이 모형에 의해 해수면 반사성분을 추정할 때 가장 큰 영향을 주는 기상요인은 풍속으로 나타났다. 따라서, 현실적인 산출을 위해서는 모형에서 풍속을 고려해 주어야만 한다.

Solar radiation components reflected by the sea surface ($R_{ss}\uparrow$) are additional energy sources comprising the solar radiation regime. Previous studies, based on observational approaches, indicated that $R_{ss}\uparrow$ is an available climatological resource. However, an estimation process for $R_{ss}\uparrow$ has not been established. In this case study over Jeju Island in South Korea, we applied a new estimation process to solar radiation modeling and discussed the spatial distribution of $R_{ss}\uparrow$ and its seasonal variation. Our results showed that the illuminated area and the intensity of $R_{ss}\uparrow$ became greatest at the winter solstice and least at the summer solstice. We estimated the illuminated area of $R_{ss}\uparrow$ as it expanded over the southern slope of Jeju Island. At the winter solstice, on a daily basis, the area and intensity of illumination by $R_{ss}\uparrow$ were $182.3km^2$ and $0.41\;MJ\;m^{-2}\;day\;{-1}$, respectively. Comparing the daily accumulative and instantaneous values of $R_{ss}\uparrow$ intensity, the difference was about 20 times greater in daily cases than in instantaneous cases. On the other hand, for instantaneous values, the $R_{ss}\uparrow$ intensity accounted for up to 33% of the three components, i.e., direct, diffuse and reflected radiation in winter solstice. In addition, it was estimated that the sea surface reflectance depended on the wind speed. Therefore, in a practical use of this revised model, wind conditions should be considered as a critical factor in estimating $R_{ss}\uparrow$.

키워드

참고문헌

  1. Boyer, G. D., and Feldhake, M. C., 1991: Distributions of horizon-limited direct beam potential radiation in steep pastures, Earth Surface Processes and Landforms 16, 1-10. https://doi.org/10.1002/esp.3290160102
  2. Dubayah, R. and Loechel, S., 1997: Modeling topographic solar radiation using GOES data, Journal of Applied Meteorology 36, 141-154. https://doi.org/10.1175/1520-0450(1997)036<0141:MTSRUG>2.0.CO;2
  3. Garnter B. J., and A. Ohmura, 1968: A Method of Calculating the Direct Shortwave Radiation Income of Slopes, Journal of Applied Meteorology 7, 796-800. https://doi.org/10.1175/1520-0450(1968)007<0796:AMOCTD>2.0.CO;2
  4. Haltrin, l. V., 2002: Algorithm and code to calculate specular reflection of light from a wavy water surface, Proceedings of the Seventh International Conference on Remote Sensing for Marine and Coastal Environments, 20-22 May, 2002, Miami, Florida, USA.
  5. Hayashi, Y., and Y., Kurose, 1997: Spatial distribution of radiation fields estimated by a 250-m mesh model in mountains-agricultural regions, Geographical Review of Japan 70A-5, 307-320. (In Japanese)
  6. Hwang, A. P., 1997: A study of the wavenumber spectra of short water waves in the ocean. Part2: spectral model and mean square slope. Journal of Atmospheric and Oceanic Technology 14, 1174-1186. https://doi.org/10.1175/1520-0426(1997)014<1174:ASOTWS>2.0.CO;2
  7. Kurose, Y., 1991: Estimation model for spatial distribution of solar radiation over complex terrains using 250-m grid size data. Journal of Agricultural Meteorology 47(2), 95-99. (In Japanese) https://doi.org/10.2480/agrmet.47.95
  8. Swift, L. W. Jr., 1976: Algorithm for Solar Radiation on Mountain Slopes, Water Resources Research 12(1), c. https://doi.org/10.1029/WR012i001p00108
  9. Muller D. M., and D, Scherer, 2005: A grid- and subgridscale radiation parameterization of topographic effects for mesoscale weather forecast models, Monthly Weather Review 133, 1431-1442. https://doi.org/10.1175/MWR2927.1
  10. Varley, M. J., K. J. Beven, and H. R. Oliver, 1996: Modeling solar radiation in steeply sloping terrain, International Journal of Climate 16, 93-104. https://doi.org/10.1002/(SICI)1097-0088(199601)16:1<93::AID-JOC992>3.0.CO;2-T
  11. Wakiyama, Y., and K., Ohba, 1997: Effect of radiation reflected from the sea on the spectrum of diffuse radiation at the canopy of orchard on the slope facing to the sea, Journal of Agricultural Meteorology 53(2), 111-118. (In Japanese) https://doi.org/10.2480/agrmet.53.111
  12. Wang, Q., J. Tenhunen, M. Schmidt, O. Kolcun, and M. Droesler, 2006: A Model to Estimate Global Radiation in Complex Terrain, Boundary-Layer Meteorology 119, 409-429. https://doi.org/10.1007/s10546-005-9000-1