References
- Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138-D141 https://doi.org/10.1093/nar/gkh121
- Cavaille J, Chetouani F, Bachellerie JP (1999) The yeast Saccharomyces cerevisiae YDL112w ORF encodes the putative 20-Oribose methyltransferase catalyzing the formation of Gm18 in tRNAs. RNA 5:66-81 https://doi.org/10.1017/S1355838299981475
- Chen P, Jager G, Zheng B (2010) Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana. BMC Plant Biol 10. doi:10.1186/1471-2229-10-201
- Francis MA, Dudock BS (1982) Nucleotide sequence of a spinach chloroplast isoleucine tRNA. J Biol Chem 257:11195-11198
- Gustafsson C, Reid R, Greene PJ, Santi DV (1996) Identification of new RNA modifying enzymes by iterative genome search using known modifying enzymes as probes. Nucleic Acids Res 24:3756-3762 https://doi.org/10.1093/nar/24.19.3756
- Hori H, Suzuki T, Sugawara K, Inoue Y, Shibata T, Kuramitsu S, Yokoyama S, Oshima T, Watanabe K (2002) Identification and characterization of tRNA (Gm18) methyltransferase from Thermus thermophilus HB8: domain structure and conserved amino acid sequence motifs. Genes Cells 7:259-272 https://doi.org/10.1046/j.1365-2443.2002.00520.x
- Hori H, Kubota S, Watanabe K, Kim JM, Ogasawara T, Sawasaki T, Endo Y (2003) Aquifex aeolicus tRNA (Gm18) methyltransferase has unique substrate specificity. TRNA recognition mechanism of the enzyme. J Biol Chem 278:25081-25090 https://doi.org/10.1074/jbc.M212577200
- King TH, Liu B, McCully RR, Fournier MJ (2003) Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell 11:425-435 https://doi.org/10.1016/S1097-2765(03)00040-6
- Lane BG, Ofengand J, Gray MW (1995) Pseudouridine and O20- methylated nucleosides. Significance of their selective occurrence in rRNA domains that function in ribosome-catalyzed synthesis of the peptide bonds in proteins. Biochimie 77:7-15 https://doi.org/10.1016/0300-9084(96)88098-9
- Lee YJ, Kim DH, Kim YW, Hwang I (2001) Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. Plant Cell 13:2175-2190 https://doi.org/10.1105/tpc.13.10.2175
- Lovgren JM, Wikstrom PM (2001) The rlmB gene is essential for formation of Gm2251 in 23S rRNA but not for ribosome maturation in Escherichia coli. J Bacteriol 183:6957-6960 https://doi.org/10.1128/JB.183.23.6957-6960.2001
- Marechal L, Guillemaut P, Grienenberger JM, Jeannin G, Weil JH (1985) Sequence and codon recognition of bean mitochondria and chloroplast tRNAsTrp: evidence for a high degree of homology. Nucleic Acids Res 13:4411-4416 https://doi.org/10.1093/nar/13.12.4411
- Marechal-Drouard L, Neuburger M, Guillemaut P, Douce R, Weil JH, Dietrich A (1990) A nuclear-encoded potato (Solanum tuberosum) mitochondrial tRNA(Leu) and its cytosolic counterpart have identical nucleotide sequences. FEBS Lett 262:170-172 https://doi.org/10.1016/0014-5793(90)80181-H
- Persson BC, Jager G, Gustafsson C (1997) The spoU gene of Escherichia coli, the fourth gene of the spoT operon, is essential for tRNA (Gm18) 2'-O-methyltransferase activity. Nucleic Acids Res 25:4093-4097 https://doi.org/10.1093/nar/25.20.4093
- Pintard L, Bujnicki JM, Lapeyre B, Bonnerot C (2002) MRM2 encodes a novel yeast mitochondrial 21S rRNA methyltransferase. EMBO J 21:1139-1147 https://doi.org/10.1093/emboj/21.5.1139
- Pirtle R, Calagan J, Pirtle I, Kashdan M, Vreman H, Dudock B (1981) The nucleotide sequence of spinach chloroplast methionine elongator tRNA. Nucleic Acids Res 9:183-188 https://doi.org/10.1093/nar/9.1.183
- Rozenski J, Crain PF, McCloskey JA (1999) The RNA modification database: 1999 update. Nucleic Acids Res 27:196-197 https://doi.org/10.1093/nar/27.1.196
- Sirum-Connolly K, Mason TL (1993) Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science 262:1886-1889 https://doi.org/10.1126/science.8266080
- Sirum-Connolly K, Peltier JM, Crain PF, McCloskey JA, Mason TL (1995) Implications of a functional large ribosomal RNA with only three modified nucleotides. Biochimie 77:30-39 https://doi.org/10.1016/0300-9084(96)88101-6
- Thompson J, Schmidt F, Cundliffe E (1982) Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton. J Biol Chem 257:7915-7917
- von Heijne G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180:535-545 https://doi.org/10.1111/j.1432-1033.1989.tb14679.x
- Watanabe K, Nureki O, Fukai S, Ishii R, Okamoto H, Yokoyama S, Endo Y, Hori H (2005) Roles of conserved amino acid sequence motifs in the SpoU (TrmH) RNA methyltransferase family. J Biol Chem 280:10368-10377 https://doi.org/10.1074/jbc.M411209200
- Watanabe K, Nureki O, Fukai S, Endo Y, Hori H (2006) Functional categorization of the conserved basic amino acid residues in TrmH (tRNA (Gm18) methyltransferase) enzymes. J Biol Chem 281:34630-34639 https://doi.org/10.1074/jbc.M606141200
Cited by
- NEP-TC a rRNA Methyltransferase Involved on Somatic Embryogenesis of Tamarillo ( Solanum betaceum Cav.) vol.10, pp.None, 2011, https://doi.org/10.3389/fpls.2019.00438