DOI QR코드

DOI QR Code

VaSpoU1 (SpoU gene) may be involved in organelle rRNA/tRNA modification in Viscum album

  • Ahn, Joon-Woo (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Kim, Suk-Weon (Microbial Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Liu, Jang-Ryol (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB)) ;
  • Jeong, Won-Joong (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology(KRIBB))
  • Received : 2011.03.08
  • Accepted : 2011.04.12
  • Published : 2011.07.31

Abstract

The SpoU family of proteins catalyzes the methylation of transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs). We characterized a putative tRNA/rRNA methyltransferase, VaSpoU1 of the SpoU family, from Viscum album (mistletoe). VaSpoU1 and other plant SpoU1s exhibit motifs of the SpoU methylase domain that are conserved with bacterial and yeast SpoU methyltransferases. VaSpoU1 transcripts were detected in the leaves and stems of V. album. VaSpoU1-GFP fusion proteins localized to both chloroplasts and mitochondria in Arabidopsis protoplasts. Sequence analysis similarly predicted that the plant SpoU1 proteins would localize to chloroplasts and mitochondria. Interestingly, mitochondrial localization of VaSpoU1 was inhibited by the deletion of a putative N-terminal presequence in Arabidopsis protoplasts. Therefore, VaSpoU1 may be involved in tRNA and/or rRNA methylation in both chloroplasts and mitochondria.

Keywords

References

  1. Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, Khanna A, Marshall M, Moxon S, Sonnhammer EL, Studholme DJ, Yeats C, Eddy SR (2004) The Pfam protein families database. Nucleic Acids Res 32:D138-D141 https://doi.org/10.1093/nar/gkh121
  2. Cavaille J, Chetouani F, Bachellerie JP (1999) The yeast Saccharomyces cerevisiae YDL112w ORF encodes the putative 20-Oribose methyltransferase catalyzing the formation of Gm18 in tRNAs. RNA 5:66-81 https://doi.org/10.1017/S1355838299981475
  3. Chen P, Jager G, Zheng B (2010) Transfer RNA modifications and genes for modifying enzymes in Arabidopsis thaliana. BMC Plant Biol 10. doi:10.1186/1471-2229-10-201
  4. Francis MA, Dudock BS (1982) Nucleotide sequence of a spinach chloroplast isoleucine tRNA. J Biol Chem 257:11195-11198
  5. Gustafsson C, Reid R, Greene PJ, Santi DV (1996) Identification of new RNA modifying enzymes by iterative genome search using known modifying enzymes as probes. Nucleic Acids Res 24:3756-3762 https://doi.org/10.1093/nar/24.19.3756
  6. Hori H, Suzuki T, Sugawara K, Inoue Y, Shibata T, Kuramitsu S, Yokoyama S, Oshima T, Watanabe K (2002) Identification and characterization of tRNA (Gm18) methyltransferase from Thermus thermophilus HB8: domain structure and conserved amino acid sequence motifs. Genes Cells 7:259-272 https://doi.org/10.1046/j.1365-2443.2002.00520.x
  7. Hori H, Kubota S, Watanabe K, Kim JM, Ogasawara T, Sawasaki T, Endo Y (2003) Aquifex aeolicus tRNA (Gm18) methyltransferase has unique substrate specificity. TRNA recognition mechanism of the enzyme. J Biol Chem 278:25081-25090 https://doi.org/10.1074/jbc.M212577200
  8. King TH, Liu B, McCully RR, Fournier MJ (2003) Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell 11:425-435 https://doi.org/10.1016/S1097-2765(03)00040-6
  9. Lane BG, Ofengand J, Gray MW (1995) Pseudouridine and O20- methylated nucleosides. Significance of their selective occurrence in rRNA domains that function in ribosome-catalyzed synthesis of the peptide bonds in proteins. Biochimie 77:7-15 https://doi.org/10.1016/0300-9084(96)88098-9
  10. Lee YJ, Kim DH, Kim YW, Hwang I (2001) Identification of a signal that distinguishes between the chloroplast outer envelope membrane and the endomembrane system in vivo. Plant Cell 13:2175-2190 https://doi.org/10.1105/tpc.13.10.2175
  11. Lovgren JM, Wikstrom PM (2001) The rlmB gene is essential for formation of Gm2251 in 23S rRNA but not for ribosome maturation in Escherichia coli. J Bacteriol 183:6957-6960 https://doi.org/10.1128/JB.183.23.6957-6960.2001
  12. Marechal L, Guillemaut P, Grienenberger JM, Jeannin G, Weil JH (1985) Sequence and codon recognition of bean mitochondria and chloroplast tRNAsTrp: evidence for a high degree of homology. Nucleic Acids Res 13:4411-4416 https://doi.org/10.1093/nar/13.12.4411
  13. Marechal-Drouard L, Neuburger M, Guillemaut P, Douce R, Weil JH, Dietrich A (1990) A nuclear-encoded potato (Solanum tuberosum) mitochondrial tRNA(Leu) and its cytosolic counterpart have identical nucleotide sequences. FEBS Lett 262:170-172 https://doi.org/10.1016/0014-5793(90)80181-H
  14. Persson BC, Jager G, Gustafsson C (1997) The spoU gene of Escherichia coli, the fourth gene of the spoT operon, is essential for tRNA (Gm18) 2'-O-methyltransferase activity. Nucleic Acids Res 25:4093-4097 https://doi.org/10.1093/nar/25.20.4093
  15. Pintard L, Bujnicki JM, Lapeyre B, Bonnerot C (2002) MRM2 encodes a novel yeast mitochondrial 21S rRNA methyltransferase. EMBO J 21:1139-1147 https://doi.org/10.1093/emboj/21.5.1139
  16. Pirtle R, Calagan J, Pirtle I, Kashdan M, Vreman H, Dudock B (1981) The nucleotide sequence of spinach chloroplast methionine elongator tRNA. Nucleic Acids Res 9:183-188 https://doi.org/10.1093/nar/9.1.183
  17. Rozenski J, Crain PF, McCloskey JA (1999) The RNA modification database: 1999 update. Nucleic Acids Res 27:196-197 https://doi.org/10.1093/nar/27.1.196
  18. Sirum-Connolly K, Mason TL (1993) Functional requirement of a site-specific ribose methylation in ribosomal RNA. Science 262:1886-1889 https://doi.org/10.1126/science.8266080
  19. Sirum-Connolly K, Peltier JM, Crain PF, McCloskey JA, Mason TL (1995) Implications of a functional large ribosomal RNA with only three modified nucleotides. Biochimie 77:30-39 https://doi.org/10.1016/0300-9084(96)88101-6
  20. Thompson J, Schmidt F, Cundliffe E (1982) Site of action of a ribosomal RNA methylase conferring resistance to thiostrepton. J Biol Chem 257:7915-7917
  21. von Heijne G, Steppuhn J, Herrmann RG (1989) Domain structure of mitochondrial and chloroplast targeting peptides. Eur J Biochem 180:535-545 https://doi.org/10.1111/j.1432-1033.1989.tb14679.x
  22. Watanabe K, Nureki O, Fukai S, Ishii R, Okamoto H, Yokoyama S, Endo Y, Hori H (2005) Roles of conserved amino acid sequence motifs in the SpoU (TrmH) RNA methyltransferase family. J Biol Chem 280:10368-10377 https://doi.org/10.1074/jbc.M411209200
  23. Watanabe K, Nureki O, Fukai S, Endo Y, Hori H (2006) Functional categorization of the conserved basic amino acid residues in TrmH (tRNA (Gm18) methyltransferase) enzymes. J Biol Chem 281:34630-34639 https://doi.org/10.1074/jbc.M606141200

Cited by

  1. NEP-TC a rRNA Methyltransferase Involved on Somatic Embryogenesis of Tamarillo ( Solanum betaceum Cav.) vol.10, pp.None, 2011, https://doi.org/10.3389/fpls.2019.00438