DOI QR코드

DOI QR Code

황산구리 전착에서의 첨가제가 구리전착층의 경도에 미치는 영향

Effect of Additives on the Hardness of Copper Electrodeposits in Acidic Sulfate Electrolyte

  • 민성기 (인하대학교 신소재공학부) ;
  • 이정자 (인하대학교 신소재공학부) ;
  • 황운석 (인하대학교 신소재공학부)
  • Min, Sung-Ki (School of Materials Science and Engineering, Inha University) ;
  • Lee, Jeong-Ja (School of Materials Science and Engineering, Inha University) ;
  • Hwang, Woon-Suk (School of Materials Science and Engineering, Inha University)
  • 투고 : 2011.08.01
  • 심사 : 2011.08.29
  • 발행 : 2011.08.01

초록

Copper electroplating has been applied to various fields such as decorative plating and through-hole plating. Technical realization of high strength copper preplating for wear-resistant tools and molds in addition to these applications is the aim of this work. Brighters and levelers, such as MPSA, Gelatin, Thiourea, PEG and JGB, were added in copper sulfate electrolyte, and the effects of these organic additives on the hardness were evaluated. All additives in this work were effective in increasing the hardness of copper electrodeposits. Thiourea increased the hardness up to 350 VHN, and was the most effective accelarator in sulfate electrolyte. It was shown from the X-ray diffraction analysis that preferred orientation changed from (200) to (111) with increasing concentration of organic additives. Crystallite size decreased with increasing concentration of additive. Hardness was increased with decreasing crystallite size, and this result is consistent with Hall-Petch relationship, and it was apparent that the hardening of copper electrodeposits results from the grain refining effect.

키워드

참고문헌

  1. R. H. Song, J. S. Kim, and S. I. Pyun, J. Met. Fin. Soc., Korea, 20, 154 (1987).
  2. C.P. Fabian, M.J. Ridd, and M.E. Sheehan, J. Hydrometallurgy, 86, 44 (2007). https://doi.org/10.1016/j.hydromet.2006.11.002
  3. K. Kondo, T. Matasumoto, and K. Watanabe, J. Electrochem. Soc., 151, 250 (2004).
  4. K. G. Jordan and C.W. Tobias, J. Electrochem. Soc., 138, 1251 (1991). https://doi.org/10.1149/1.2085768
  5. Y. Y. Lee, Y. J. Park, B. W. Cho, and J. B. Lee, Corros. Sci. Tech., 1, 90 (2002).
  6. J. S. Kim and H. S. Kim, Corros. Sci. Tech., 6, 154, (2007).
  7. C. Cheung, F. Djuanda, U. Erb, and G. Palumbo, J. Nanostructured Materials, 5, 513 (1995). https://doi.org/10.1016/0965-9773(95)00264-F
  8. K. A. Padmanabhan, J. Mater. Sci. Eng., 200, 304 (2001).
  9. B. Szpunar and M. Aus, J. Magnerism and Magnetic Materials, 187, 325 (1998). https://doi.org/10.1016/S0304-8853(98)00134-6
  10. W. S. Hwang and H. W. Kim, Corros. Sci. Tech., 2, 243 (2003).
  11. W. S. Hwang and W. S. Cho, Mater. Sci. Forum, 510, 1062 (2006).
  12. W. S. Hwang and J. J. Lee, Mater. Sci. Forum, 510, 1126 (2006).
  13. M. H. Seo, J. S. Kim, S. H. Kim, J. I. Wyi, W. S. Hwang, S. S. Jang, H. K. Jung, and B. S. Chun, Corros. Sci. Tech., 2, 197 (2003).
  14. M. Hakamada, Y. Nakamoto, H. Matsumoto, H. Iwasaki, Y. Chen, H. Kusuda, and M. Mabuchi, Mater. Sci. Eng. A, 457, 120 (2007). https://doi.org/10.1016/j.msea.2006.12.101
  15. J. J. Kim, S. K. Kim, and Y. S. Kim, J. Electroanal. Chem., 542, 61 (2003).
  16. N. D. Nikolic, E. R. Stojikovic, D. R. Djurovic, M. G. Pavlovic, and V. R. Knezevic, Mater. Sci. Forum, 352, 73 (2000).
  17. S. R. Lekshmana, J. Cryst. Growth, 102, 542 (1990). https://doi.org/10.1016/0022-0248(90)90411-D
  18. A. Ibanez and E. Fatas, Surf. Coat. Technol., 191, 7 (2005). https://doi.org/10.1016/j.surfcoat.2004.05.001