DOI QR코드

DOI QR Code

Thiadiazolopyrimidines as Acid Corrosion Inhibitors for Mild Steel

  • Chitra, S. (Dept. of Chemistry, P.S.G.R. Krishnammal College for Women) ;
  • Parameswari, K. (Dept. of Chemistry, P.S.G.R. Krishnammal College for Women) ;
  • Vidhya, M. (Dept. of Chemistry, P.S.G.R. Krishnammal College for Women) ;
  • Kalishwari, M. (Dept. of Chemistry, P.S.G.R. Krishnammal College for Women) ;
  • Selvaraj, A. (Dept. of Chemistry, CBM College)
  • Received : 2010.10.25
  • Accepted : 2011.02.25
  • Published : 2011.02.01

Abstract

The inhibitive action of thiadiazolopyrimidines on mild steel in 1 M $H_{2}SO_{4}$ has been studied using weight loss, gasometric studies and electrochemical polarization and AC impedance measurements. The effect of temperature on the corrosion behaviour of mild steel in 1 M $H_{2}SO_{4}$ with optimum concentration of inhibitors was studied in the temperature ranging from 313-333K The adsorption of the inhibitor on the surface of mild steel was found to be exothermic, spontaneous and followed the mechanism of physisorption. The adsorption of these compounds on mild steel surface was found to obey Langmuir adsorption isotherm. The protective film formed on the surface of mild steel by the adsorption of inhibitor in 1 M $H_{2}SO_{4}$ solution was confirmed by optical microscopic technique. Synergistic effect of halide ions on mild steel in 1 M $H_{2}SO_{4}$ was studied by weight loss technique.

Keywords

References

  1. F. Bentiss, M. Traisnel, and M. Lagrenee, Corros. Sci., 42, 127 (2000). https://doi.org/10.1016/S0010-938X(99)00049-9
  2. G. Trabanelli, Corrosion, 47, 410 (1991). https://doi.org/10.5006/1.3585271
  3. S. A. M. Refacy, Appl. Surf. Sci., 240, 396 (2005). https://doi.org/10.1016/j.apsusc.2004.07.014
  4. M. A. Quraishi and H. K. Sharma, J. Appl. Electrochem, 35, 33 (2005). https://doi.org/10.1007/s10800-004-2055-8
  5. A. Ashassi-Sorkhavi, B. Shaaban, and D. Seifzadeh, Appl. Surf. Sci., 239, 239 (2005).
  6. M. Bouklah, A. Ouassini, B. Hammouti, and A. E. Idrissi, Appl. Surf. Sci., 252, 2178 (2006). https://doi.org/10.1016/j.apsusc.2005.03.177
  7. F. Bentiss, M. Traisnel, L. Gengembree, and M. Lagrenee, Appl. Surf. Sci., 161, 194 (2000). https://doi.org/10.1016/S0169-4332(00)00287-7
  8. A. K. Pandhy, M. Bardhan, and S. Panda, Indian J. Chem., 42B, 910 (2003).
  9. G. Schmitt, British Corros. J., 19, 99 (1984).
  10. I. Dehri and M. Ozcan, Mater. Chem. Phys., 98, 316 (2006). https://doi.org/10.1016/j.matchemphys.2005.09.020
  11. F. M. Donahue and K. Nobe, J. Electrochem. Soc., 112, 886 (1965). https://doi.org/10.1149/1.2423723
  12. E. E. Ebenso, H. Alemu, S. A. Umoren, and I. B. Obot, Int. J. Elctrochem. Sci., 3, 1325 (2008).
  13. J. Y. Zou and B. H. Yang, Mater. Prot., 21, 4 (1988).
  14. M. Sahin, S. Bilgic, and H. Yilmaz, Appl. Surf. sci., 195, 1 (2002). https://doi.org/10.1016/S0169-4332(01)00783-8
  15. J. H. Sluyters, RECUEIL, 79, 1092 (1960).
  16. A. Selvaraj and R. S. Subrahmanya, J. Electrochem. Soc., 32, 193 (1988).
  17. A. Selvaraj and R. S. Subrahmanya, J. Electrochem. Soc., 32, 225 (1987).
  18. K. E. Heusler, J. Electrochem. Soc., 62, 529 (1958).
  19. J. O. M. Bockris, B. Drazic, and A. R. Drazic, Electrochem. Acta, 4, 325 (1961). https://doi.org/10.1016/0013-4686(61)80026-1
  20. Z. A. Iofa, V. V. Batrokov, and Cho NgokBa, Zaschita Metallor, 1, 56 (1995).
  21. L. Niu, H. Zhang, F. Wei, S. Wa, X. Cao, and P. Lui, Appl. Surf. Sci., 252, 1634 (2005). https://doi.org/10.1016/j.apsusc.2005.02.134
  22. S. A. Umoren and E. E. Ebenso, Mater. Chem. Phys., 106, 387 (2007). https://doi.org/10.1016/j.matchemphys.2007.06.018
  23. M. A. Quraishi, A. S. Mideen, M. A. W. Khan, and M. Ajmal. Indian, J. Chem. Technol., 1, 329 (1994).
  24. S. Muralidharan, M. A. Quraish, and V. K. Iyer, Corros. Sci., 37, 1739 (1995). https://doi.org/10.1016/0010-938X(95)00068-U