Arginase II Inhibitory Activity from Crude Drugs

  • Received : 2011.04.16
  • Accepted : 2011.05.19
  • Published : 2011.06.30

Abstract

Arginase competitively inhibits nitric oxide synthase (NOS) via use of the common substrate L-arginine. Arginase II has recently reported as a novel therapeutic target for the treatment of cardiovascular diseases such as atherosclerosis. In our experiment, the EtOH extracts of four-hundreds extracts drugs were investigated for the arginase inhibitory activity. Among them, four extracts exhibited over 50% inhibition of arginase II activity compared to control at a concentration of 150${\mu}g/ml$. In particular, the seed of Arctium lappa, gum-resin of Boswellia carterii, aerial part of Artemisia apiacea and rhizome of Cyperus rotundus inhibited arginase II activity, with $IC_{50}$ values of 118.4, 135.4, 123.9 and 86.7${\mu}g/ml$, respectively. In addition, four plant extracts showed less than 20% inhibition of arginase I activity at 150${\mu}g/ml$. These plants might be the potential candidate materials in the development of the novel atherosclerosis drug.

Keywords

References

  1. Berkowitz, D.E., White, R., Li, D., Minhas, K.M., Cernetich, A., Kim, S., Burke, S., Shoukas, A.A., Nyhan, D., Champion, H.C., and Hare, J.M., Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation 108, 2000-2006 (2003). https://doi.org/10.1161/01.CIR.0000092948.04444.C7
  2. Bivalaqua, T.J., Hellstrom, W.J., Kadowitz, P.J., and Champion, H.C., Increased expression of arginase II in human diabetic corpus cavernosum: in diabetic-associated erectile dysfunction. Biochem. Biophys. Res. Commun. 283, 923-927 (2001). https://doi.org/10.1006/bbrc.2001.4874
  3. Buchele, B., Zugmaier, W., Estrada, A., Genze, F., Syrovets, T., Paetz, C., Schneider, B., and Simmet, T., Characerization of 3a-acetyl-11-keto-aboswellic acid, a pentacyclic triterpenoid inducing apoptosis in vitro and in vivo. Planta Med. 72, 1285-1289 (2006). https://doi.org/10.1055/s-2006-951680
  4. Chicoine, L.G., Paffett, M.L., Young, T.L., and Nelin, L.D., Arginase inhibition increases nitric oxide production in bovine pulmonary arterial endothelial cells. Am. J. Physiol. Lung Cell Mol. Physiol. 287, L60-68 (2004). https://doi.org/10.1152/ajplung.00194.2003
  5. Demougeot, C., Prigent-Tessier, A., Marie, C., and Berthelot, A., Arginase inhibition reduces endothelial dysfunction and blood pressure rising in spontaneously hypertensive rats. J. Hypertens. 23, 971-978 (2005). https://doi.org/10.1097/01.hjh.0000166837.78559.93
  6. Fan, A.Y., Lao, L., Zhang, R.X., Zhou, A.N., Wang, L.B., Moudgil, K.D., Lee, D.Y., Ma, Z.Z., Zhang, W.Y., and Berman, B.M., Effects of acetone extract of Boswellia carterii Birdw. (Burseraceae) gum resin on adjuvant-induced arthritis in lewis rats. J. Ethnopharmacol. 101, 104-109 (2005). https://doi.org/10.1016/j.jep.2005.03.033
  7. Holowatz, L.A., Thompson, C.S., and Kenney, W.L., L-Arginine supplementation or arginase inhibition augments reflex cutaneous vasodilatation in aged human skin. J. Physiol. 574, 573-581 (2006). https://doi.org/10.1113/jphysiol.2006.108993
  8. Jeong, S.J., Miyamoto, T., Inagaki, M., Kim, Y.C., and Higuchi, R., Rotundines A-C, three novel sesquiterpene alkaloids from Cyperus rotundus. J. Nat. Prod. 63, 673-675 (2000). https://doi.org/10.1021/np990588r
  9. Jin, J.H., Lee, D.U., Kim, Y.S., and Kim, H.P., Anti-allergic activity of sesquiterpenes from the rhizomes of Cyperus rotundus. Arch. Pharm. Res. 34, 223-228 (2011). https://doi.org/10.1007/s12272-011-0207-z
  10. Johnson, F.K., Johnson, R.A., Peyton, K.J., and Durante, W., Arginase inhibition restores arteriolar endothelial function in Dahl rats with saltinduced hypertension. Am. J. Physiol. Regul Integr. Comp. Physiol. 288, R1057-1062 (2005). https://doi.org/10.1152/ajpregu.00758.2004
  11. Kim, K.S., Lee, S., Lee, Y.S., Jung, S.H., Park, Y., Shin, K.H., and Kim, B.K., Anti-oxidant activities of the extracts from the herbs of Artemisia apiacea. J. Ethnopharmacol. 85, 69-72 (2003). https://doi.org/10.1016/S0378-8741(02)00338-0
  12. Klasen, S., Hammermann, R., Fuhrmann, M., Lindemann, D., Beck, K.F., Pfelischifter, J., and Racke, K., Glucocorticoids inhibit lipopolysaccharideinduced up-regulation of arginase in rat alveolar macrophages. Br. J. Pharmacol. 132, 1349-1357 (2001). https://doi.org/10.1038/sj.bjp.0703951
  13. Lee, C.H., Hwang, D.S., Kim, H.G., Oh, H., Park, H., Cho, J.H., Lee, J.M., Jang, J.B., Lee, K.S., and Oh, M.S., Protective effect of Cyperi rhizome against 6-hydroxydopamine-induced neuronal damage. J. Med. Food 13, 564-571 (2010). https://doi.org/10.1089/jmf.2009.1252
  14. Lee, S., Kim, K.S., Shim, S.H., Park, Y.M., and Kim, B.K., Constituents from the non-polar fraction of Artemisia apiacea. Arch. Pharm. Res. 26, 902-905 (2003). https://doi.org/10.1007/BF02980197
  15. Morikawa, T., Oominami, H., Matsuda, H., and Yoshikawa, M., Four new ursane-type triterpenes, olibanumols K, L, M, and N, from traditional Egyptian medicine olibanum, the gum-resin of Boswellia carterii. Chem. Pharm. Bull. 58, 1541-1544 (2010). https://doi.org/10.1248/cpb.58.1541
  16. Morris, C.R., Poljakovic, M., Lavrisha, L., Machado, L., Kuypers, F.A., and Morris, S.M. Jr., Decreased arginine bioavailability and increased serum arginase activity in asthma. Am. J. Respir. Crit. Care Med. 170, 148-153 (2004). https://doi.org/10.1164/rccm.200309-1304OC
  17. Ryoo, S., Gupta, G., Benjo, A., Lim, H.K., Camara, A., Sikka, G., Lim, H.K., Sohi, J., Santhanam, L., Soucy, K., Tuday, E., Baraban, E., Ilies, M., Gerstenblith, G., Nyhan, D., Shoukas, A., Christianson, D.W., Alp, N.J., Champion, H.C., Huso, D., and Berkowitz, D.E., Endothelial arginase II: a novel target for the treatment of atherosclerosis. Circ. Res. 102, 923-932 (2008). https://doi.org/10.1161/CIRCRESAHA.107.169573
  18. Ryoo, S., Lemmon, C.A., Soucy, K.G., Gupta, G., White, A.R., Nyhan, D., Shoukas, A., Romer, L.H., and Berkowitz, D.E., Oxidized low-density lipoprotein-dependent endothelial arginase II activation contributes to impaired nitric oxide signaling. Circ. Res. 99, 951-960 (2006). https://doi.org/10.1161/01.RES.0000247034.24662.b4
  19. Seo, E.J., Lee, D.U., Kwak, H.H., Lee, S.M., Kim, Y.S., and Jung, Y.S., Antiplatelet effects of Cyperus rotundus and its component (+)- nootkatone. J. Ethnopharmacol. in press (2011).
  20. Simon, A., Plies, L., Habermeier, A., Martine, U., Reining, M., and Closs, E.I., Role of neutral amino acid transport and protein breakdown for substrate supply of nitric oxide synthase in human endothelial cells. Circ. Res. 93, 813-820 (2003). https://doi.org/10.1161/01.RES.0000097761.19223.0D
  21. Sonwa, M.M. and Konig, W.A., Chemical study of the essential oil of Cyperus rotundus. Phytochemistry 58, 799-810 (2001). https://doi.org/10.1016/S0031-9422(01)00301-6
  22. Tsai, W.J., Chang, C.T., Wang, G.J., Lee, T.H., Chang, S.F., Lu, S.C., and Kuo, Y.C., Arctigenin from Arctium lappa inhibits interleukin-2 and interferon gene expression in primary human T lymphocytes. Chin. Med. 25, 12 (2011).
  23. White, A.R., Ryoo, S., Li, D., Champion, H.C., Steppan, J., Wang, D., Nyhan, D., Shoukas, A.A., Hare, J.M., and Berkowitz, D.E., Knockdown of arginase I restores NO signaling in the vasculature of old rats. Hypertension 47, 245-251 (2006). https://doi.org/10.1161/01.HYP.0000198543.34502.d7
  24. Woo, A., Min, B.S., and Ryoo, S., Piceatannol-3'-O-$\beta$-D-glucopyranoside as an active component of rhubarb activates endothelial nitric oxide synthase through inhibition of arginase activity. Exp. Mol. Med. 42(7), 524-532 (2010). https://doi.org/10.3858/emm.2010.42.7.053
  25. Xu, Y., Zhang, H.W., Wan, X.C., and Zou, Z.M., Complete assignments of $^1H$ and $^{13}C$ NMR for two new sesquiterpenes from Cyperus rotundus L.. Magn. Reson. Chem. 47, 527-531 (2009). https://doi.org/10.1002/mrc.2416
  26. Xu, Z., Wang, X., Zhou, M., Ma, L., Deng, Y., Zhang, H., Zhao, A., Zhang, Y., and Jia, W., The antidiabetic activity of total ligna from Fructus Arctii against alloxan-induced diabetes in mice and rats. Phytother. Res. 22, 97-101 (2008). https://doi.org/10.1002/ptr.2273
  27. Yazdanparast, R., and Ardestani, A., In vitro antioxidant and free radical scavenging activity of Cyperus rotundus. J. Med. Food 10, 667-674 (2007). https://doi.org/10.1089/jmf.2006.090
  28. Zhao, F., Wang, L., and Liu, K., In vitro anti-inflammatory effects of artigenin, a lignin from Arctium lappa L., through inhibition on iNOS pathway. J. Ethnopharmacol. 122, 457-462 (2009). https://doi.org/10.1016/j.jep.2009.01.038