Anti-Inflammatory Activity of Compounds from the Whole Plant of Patrinia saniculaefolia

  • An, Ren-Bo (Key Laboratory of Natural Resources of Changbai Mountain & Funtional Molecules (Yanbian University), Ministry of Education) ;
  • Na, Min-Kyun (College of Pharmacy, Yeungnam University) ;
  • Min, Byung-Sun (College of Pharmacy, Catholic University of Daegu) ;
  • Chang, Hyeun-Wook (College of Pharmacy, Yeungnam University) ;
  • Bae, Ki-Hwan (College of Pharmacy, Chungnam National University)
  • Received : 2011.02.01
  • Accepted : 2011.03.15
  • Published : 2011.06.30

Abstract

An in vitro bioassay-guide revealed that the methanol (MeOH) extract of the whole plant of Patrinia saniculaefolia (Valerianaceae) showed cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) dual inhibitory activity by assessing their effects on the production of prostaglandin $D_2$ ($PGD_2$) and leukotriene $C_4$ ($LTC_4$) in mouse bone marrow-derived mast cells (BMMCs). Phytochemical study of the MeOH extract of this plant led to the isolation of twelve compounds; ${\beta}$-farnesene (1), squalene (2), nardostachin (3), patridoid I (4), patridoid II (5), patridoid II-A (6), oleanolic acid (7), oleanonic acid (8), 23-hydroxyursolic acid (9), oleanolic acid 3-O-${\alpha}$-L-arabinopyranoside (10), oleanolic acid 3-O-${\beta}$-D-glucopyranoside (11), oleanolic acid 3-O-[${\beta}$-D-xylopyranosyl-(1${\rightarrow}$3)-${\beta}$-D-(6-O-butyl)glucuronopyranoside] (12). Among the compounds, 4 and 5 strongly inhibited both the COX-2-dependent $PGD_2$ generation with $IC_{50}$ values of 8.7 and 13.6 ${\mu}M$, respectively, and the generation of $LTC_4$ in the 5-LOX dependent phase with $IC_{50}$ values of 41.7 and 46.9 ${\mu}M$, respectively, which suggest that the anti-inflammatory activity of P. saniculaefolia might occur in part via the inhibition of both $PGD_2$ and $LTC_4$ generation by 4 and 5.

Keywords

References

  1. Abdel-Kader, M.S., Bahler, B.D., Malone, S., Werkhoven, M.C., Wisse, J.H., Neddermann, K.M., Bursuker, I., and Kingston, D.G., Bioactive saponins from Swartzia schomburgkii from the suriname rainforest. J. Nat. Prod. 63, 1461-1464, (2000). https://doi.org/10.1021/np0000926
  2. An, R.B., Min, B.S., Na, M.K., Chang, H.W., Son, K.H., Kim, H.P., Lee, H.K., Bae, K., and Kang, S.S., Iridoid esters from Patrinia saniculaefolia. Chem. Pharm. Bull. 51, 583-585 (2003). https://doi.org/10.1248/cpb.51.583
  3. An, R.B., Na, M.K., Min, B.S., Lee, H.K., and Bae, K., Anti-complement activity of triterpenoids from the whole plant of Patrinia saniculaefolia. Nat. Prod. Sci. 14, 249-253 (2008).
  4. Andersen, N.H. and Syrdal, D.D., Terpenes and sesquiterpenes of Chamaecyparis nootkatensis leaf oil. Phytochemistry 9, 1325-1340 (1970). https://doi.org/10.1016/S0031-9422(00)85326-1
  5. Bagchi, A., Oshima, Y., and Hikino, H., Nardostachin, an iridoid of Nardostachys chinensis. Planta Med. 54, 87-88 (1988).
  6. Bae, K., The Medicinal Plants of Korea, Kyo-Hak Publishing, Seoul, p 475 (2000).
  7. Burger, B.V., Roux, M.L., Spies, H.S., and Bigalke, R.C., Mammalian pheromone studies-III. (e,e)-7,11,15-trimethyl-3-methylenehexadeca- 1,6,10,14-tetraene, a new diterpene analogue of $\beta$-farnesene from the dorsal gland of the springbok, Antidorcas marsupialis. Tetrahedron Lett. 19, 5221-5224 (1978). https://doi.org/10.1016/S0040-4039(01)85855-X
  8. Do, J.C., Chai, J.Y., and Son, K.H., Studies on the components of Lycopus Iucidus (I) Kor. J. Pharmacogn. 22, 162-165 (1991).
  9. Ju, H.K., Baek, S.H., An, R.B., Bae, K., Son, K.H., Kim H.P., Kang, S.S., Lee, S.H., Son, J.K., and Chang, H.W., Inhibitory effects of nardostachin on nitric oxide, prostaglandin E2, and tumor necrosis factor-alpha production in lipopolysaccharide activated macrophages. Biol. Pharm. Bull. 26, 1375-1378 (2003a). https://doi.org/10.1248/bpb.26.1375
  10. Ju, H.K., Moon, T.C., Lee, E., Baek, S.H., An, R.B., Bae, K., Son, K.H., Kim H.P., Kang, S.S., Lee, S.H., Son, J.K., and Chang, H.W., Inhibitory effects of a new iridoid, patridoid II and its isomers, on nitric oxide and TNF-alpha production in cultured murine macrophages. Planta Med. 69, 950-953 (2003b). https://doi.org/10.1055/s-2003-45107
  11. Jung, H.J., Min, B.S., Park, J.Y., Kim, Y.H., Lee, H.K., and Bae, K., Gymnasterkoreaynes A-F, cytotoxic polyacetylenes from Gymnaster koraiensis. J. Nat. Prod. 65, 897-901 (2002). https://doi.org/10.1021/np0104018
  12. Kawamura, N., Watanabe, H., and Oshio, H., Saponins from roots of Momordica cochinchinensis. Phytochemistry 27, 3585-3591 (1988). https://doi.org/10.1016/0031-9422(88)80773-8
  13. Kitanaka, S., Yasuda, I., Kashiwada, Y., Hu, C.Q., Bastow, K.F., Bori, I.D., and Lee, K.H., Antitumor agents, 162. Cell-based assays for identifying novel DNA topoisomerase inhibitors: studies on the constituents of Fatsia japonica. J. Nat. Prod. 58, 1647-1654, (1995). https://doi.org/10.1021/np50125a001
  14. Lee, T.B., Illustrated Flora of Korea. Hyangmoon Publishing Co., Ltd.: Seoul, p. 714 (1980).
  15. Lee, Y.N., Flora of Korea, Kyo-Hak Publishing Co., Ltd.: Seoul, p. 756 (1996).
  16. Lee S.M., Park J.G., Lee Y.H., Lee C.G., Min B.S., Kim J.H., and Lee H.K., Anti-complementary activity of triterpenoides from fruits of Zizyphus jujuba. Biol. Pharm. Bull. 27, 1883-1886 (2004). https://doi.org/10.1248/bpb.27.1883
  17. Lee, S.H., Son, M.J., Ju, H.K., Lin, C.X., Moon, T.C., Choi, H.G., Son, J.K., and Chang, H.W., Dual inhibition of cyclooxygenases-2 and 5- lipoxygenase by deoxypodophyllo-toxin (anthricin) in mouse bone marrow-derived mast cells. Biol. Pharm. Bull. 27, 786-788 (2004). https://doi.org/10.1248/bpb.27.786
  18. Li, C.S., Black, W.C., Chan, C.C., Ford-Hutchinson, A.W., Gauthier, J.Y., Gordon, R., Guay, D., Kargman, S., Lau, C.K., and Mancini, J., Cyclooxygenase-2 inhibitors. Synthesis and pharmacological activities of 5-methanesulfonamido-1-indanone derivatives. J. Med. Chem. 38, 4897-4905 (1995). https://doi.org/10.1021/jm00025a007
  19. Li, Y.F., Lou, F.C., Tang, Y.P., and Wang, J.H., Advances of researches in Patrinia Juss. Nat. Prod. Res. Dev. 13, 71-75 (2001).
  20. Makino, H., Ashida, Y., Saijo, T., Kuriki, H., Terao, S., and Maki, Y., Role of leukotrienes in rat reversed passive Arthus pleurisy and the effect of AA-861, a 5-lipoxygenase inhibitor. Int. Arch. Allergy Appl. Immunol. 79, 38-44 (1986). https://doi.org/10.1159/000233939
  21. Moon, T.C., Murakami, M., Kudo, I., Son, K.H., Kim, H.P., Kang, S.S., and Chang, H.W., A new class of COX-2 inhibitor, rutaecarpine from Evodia rutaecarpa. Inflamm. Res. 48, 621-625 (1999). https://doi.org/10.1007/s000110050512
  22. Murakami, M., Matsumoto, R., Austen, K.F., and Arm, J.P., Prostaglandin endoperoxide synthase-1 and -2 couple to different transmembrane stimuli to generate prostaglandin D2 in mouse bone marrow-derived mast cells. J. Biol. Chem. 269, 22269-22275 (1994).
  23. Ouellet, M., and Percival, M.D., Effect of inhibitor time-dependency on selectivity towards cyclooxygenase isoforms. Biochem. J. 306, 247- 251 (1995). https://doi.org/10.1042/bj3060247
  24. Park, J.Y., Min, B.S., Jung, H.J., Kim, Y.H., Lee, H.K., and Bae, K., Polyacetylene glycosides from Gymnaster koraiensis. Chem. Pharm. Bull. 50, 685-687 (2002). https://doi.org/10.1248/cpb.50.685
  25. Seo, S., Tomita, Y., and Tori, K., Carbon-13 NMR spectra of urs-12-enes and application to structural assignments of components of Isodon japonicus tissue cultures. Tetrahedron Lett. 16, 7-10 (1975). https://doi.org/10.1016/S0040-4039(00)71763-1
  26. Thuong, P.T., Min, B.S., Jin, W., Na, M., Lee, J., Seong, R., Lee, Y.M., Song, K., Seong, Y., Lee, H.K., Bae, K., and Kang, S.S., Anticomplementary activity of ursane-type triterpenoids from Weigela subsessilis. Biol. Pharm. Bull. 29, 830-833 (2006). https://doi.org/10.1248/bpb.29.830
  27. Tursch, B., Savoir, R., Ottinger, R., and Chiurdoglu, G., Triterpenes. VII. N M R spectra of triterpenes. Effect of substitution on the chemical shifts of methyl groups in the olean-12-ene series. Tetrahedron Lett. 8, 539-543 (1967). https://doi.org/10.1016/S0040-4039(00)90544-6