Decrease of Intracellular pH and Activation of $Na^+-H^+$ Exchanger by Fluid Pressure in Rat Ventricular Myocytes

유체 압력에 의한 흰쥐 심실근세포 pH의 감소 및 $Na^+-H^+$ 교환체의 활성화

  • Kim, Joon-Chul (College of Pharmacy, IDRD, Chungnam National University) ;
  • Woo, Sun-Hee (College of Pharmacy, IDRD, Chungnam National University)
  • 김준철 (충남대학교 약학대학 의약품개발연구소) ;
  • 우선희 (충남대학교 약학대학 의약품개발연구소)
  • Received : 2011.05.06
  • Accepted : 2011.05.30
  • Published : 2011.06.30

Abstract

An increase in ventricular pressure can alter cardiac excitation and contraction. Recent report has demonstrated that fluid pressure (FP) suppresses L-type $Ca^{2+}$ current with acceleration of the current inactivation in ventricular myocytes. Since the L-type $Ca^{2+}$ channels known to be regulated by intracellular pH ($pH_i$), this study was designed to explore whether pressurized fluid flow affects pHi in isolated rat ventricular myocytes. A flow of pressurized (~16 dyne/$cm^2$) fluid, identical to that bathing the myocytes, was applied onto single myocytes, and intracellular $H^+$ concentration was monitored using confocal $H^+$ imaging. FP significantly decreased $pH_i$ by $0.07{\pm}0.01$ pH units (n=16, P<0.01). Intracellular acidosis enhances the activity of $Na^+-H^+$ exchanger (NHE). Therefore, we examined if the NHE activity is increased by FP using the NHE inhibitor, HOE642. Although HOE642 did not alter $pH_i$ in control conditions, it decreased $pH_i$ in cells pre-exposed to FP, suggesting enhancement of NHE activity by FP. In addition, FP-induced intracellular acidosis was larger in cells pre-treated with HOE642 than in cells under the control conditions. These results suggest that FP induces intracellular acidosis and that NHE may contribute to extrude $H^+$ during the FP-induced acidosis in rat ventricular myocytes.

Keywords

References

  1. Kurachi, Y. : The effects of intracellular protons on electrical activity of single ventricular cells. Pflgers Arch. 394, 264 (1982). https://doi.org/10.1007/BF00589102
  2. Kaibara, M. and Kameyama, M. : Inhibition of the calcium channel by intracellular protons in single ventricular myocytes of the guinea-pig. J. Physiol. 403, 621 (1988). https://doi.org/10.1113/jphysiol.1988.sp017268
  3. Karmazyn, M., Gan, X. T., Humphreys, R. A., Yoshida, H. and Kusumoto, K. : The myocardial $Na^+-H^+$ exchange. Structure, regulation, and its role in heart disease. Circ. Res. 85, 777 (1999). https://doi.org/10.1161/01.RES.85.9.777
  4. Yamazaki, T., Komuro, I., Kudoh, S., Zou, Y., Nagai, R., Aikawa, R., Uozumi, H. and Yazaki, Y. : Role of ion channels and exchangers in mechanical stretch-induced cardiomyocyte hypertrophy. Circ. Res. 82, 430 (1998). https://doi.org/10.1161/01.RES.82.4.430
  5. Cingolani, H. E., Perez, N. G., Pieske, B., von Lewinski, D. and Camilion de Hurtado, M. C. : Stretch-elicited $Na^+/H^+$ exchanger activation: the autocrine/paracrine loop and its mechanical counterpart. Cardiovasc. Res. 57, 953 (2003). https://doi.org/10.1016/S0008-6363(02)00768-X
  6. Scholz, W., Albus, U., Counillon, L., Gogelein, H., Lang, H. J., Linz, W., Weichert, A. and Scholkens, B. A. : Protective effects of Hoe 642, a selective sodium-hydrogen exchange subtype 1 inhibitor, on cardiac ischemia and reperfusion. Cardiovasc. Res. 29, 260 (1996).
  7. Xue, Y. X., Aye, N. N. and Hashimoto, K. : Antiarrhythmic effects of Hoe 642, a novel $Na^+/H^+$-exchange inhibitor on ventricular arrhythmias in animal hearts. Eur. J. Pharmacol. 317, 309 (1996). https://doi.org/10.1016/S0014-2999(96)00755-8
  8. Lakatta, E. G. : Cardiovascular regulatory mechanisms in advanced age. Physiol. Rev. 73, 413 (1993). https://doi.org/10.1152/physrev.1993.73.2.413
  9. Lab, M. J. : Mechanoelectric feedback (transduction) in heart: concepts and implications. Cardiovasc. Res. 32, 3 (1996). https://doi.org/10.1016/S0008-6363(96)00088-0
  10. Lerman, B. B., Burkhoff, D., Yue, D. T., Franz, M. R. and Sagawa, K. : Mechanoelectric feedback: independent role of preload and contractility in modulation of canine ventricular excitability. J. Clin. Invest. 76, 1843 (1985). https://doi.org/10.1172/JCI112177
  11. Levine, J. H., Guarnieri, T., Kadish, A. H., White, R. I., Calkins, H. and Kan, J. S. : Changes in myocardial repolarization in patients undergoing balloon valvuloplasty for congenital pulmonary stenosis: evidence for contraction-excitation feedback in humans. Circulation 77, 70 (1988). https://doi.org/10.1161/01.CIR.77.1.70
  12. Franz, M. R., Burkhoff, D., Yue, D. T. and Sagawa, K. : Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovasc. Res. 23, 213 (1989). https://doi.org/10.1093/cvr/23.3.213
  13. Nazir, S. A. and Lab, M. J. : Mechanoelectric feedback and atrial arrhythmias. Cardiovasc. Res. 32, 52 (1996). https://doi.org/10.1016/S0008-6363(96)00054-5
  14. Conwell, J., Cocalis, M. and Erickson, L. : EAT to the beat: 'ectopic' atrial tachycardia caused by catheter whip. Lancet 342, 740 (1993).
  15. Woo, S. H., Risius, T. and Morad, M. : Modulation of local $Ca^{2+}$ release sites by rapid fluid puffing in rat atrial myocytes. Cell Calcium 41, 397 (2007). https://doi.org/10.1016/j.ceca.2006.09.005
  16. Lee, S., Kim, J. C., Li, Y., Son, M. J. and Woo, S. H. : Fluid pressure modulates L-type$ Ca^{2+}$ channel via enhancement of $ Ca^{2+}$-induced $ Ca^{2+}$ release in rat ventricular myocytes. Am. J. Physiol. 294, C966 (2008). https://doi.org/10.1152/ajpcell.00381.2007
  17. Olsen, S.-P., Clapham, D. E. and Davies, P. F. : Haemodynamic shear stress activates a $K^+$ current in vascular endothelial cells. Nature 331, 168 (1988). https://doi.org/10.1038/331168a0
  18. Ch'en F. F. T., Dilworth, E., Swietach, P., Goddard, R. S. and Vaughan-Jones, R. D. : Temperature dependence of $Na^+-H^+$ exchange, $Na^+-HCO_3$ - co-transport, intracellular buffering and intracellular pH in guinea-pig ventricular myocytes. J. Physiol. 522, 715 (2003).
  19. Pedersen, S. F., O'Donnell, M. E., Anderson, S. E. and Cala, P. M. : Physiology and pathophysiology of $Na^+/H^+$ exchange and $Na^+-K^+-Cl^-$ cotransport in the heart, brain, and blood. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1 (2006). https://doi.org/10.1152/ajpregu.00782.2005