Intensive Proteomic Approach to Identify Secreted Peptides/Proteins from 3T3-L1 Adipocytes using Gel Electrophoresis and Liquid Chromatograph Separation Methods

젤 전기영동 및 액체 크로마토그래피 분리 방법을 이용하여 지방 세포로부터 분비되는 단백질들에 대한 프로테오믹스 연구 방법

  • Hwang, Hyun-Ho (Department of Molecular Medicine, School of Medicine, Kyungpook National University) ;
  • Baek, Moon-Chang (Department of Molecular Medicine, School of Medicine, Kyungpook National University)
  • 황현호 (경북대학교 의과대학 분자의학교실) ;
  • 백문창 (경북대학교 의과대학 분자의학교실)
  • Received : 2011.02.22
  • Accepted : 2011.04.27
  • Published : 2011.06.30

Abstract

Adipocytes have been known to secrete a number of important proteins called adipokines with roles in energy metabolism, reproduction, cardiovascular function and immunity. In this study we have attempted to identify intensively secretory proteins from 3T3-L1 adipocytes. 3T3-L1 preadipocytes were differentiated into mature adipocytes and then the cells were left in serum-free medium. The supernatant was filtrated and dialyzed. Lyophilized secretome was fractionated by two different methods, 1-D SDS PAGE and RP-FPLC. The tryptic peptides from the gel slices and the FPLC fractions were analyzed by nanoLC/ESI-MS/MS. We identified a total of 303 identical proteins from two methods, 251 proteins from 1-D gel and 184 proteins from RP-FPLC. 86 of them were listed as a secretory protein Finally, we identified many known or unknown secreted proteins existed in the low level including adiponectin, angiotensinogen, bone morphogenetic protein-1 (BMP-1), macrophage migration inhibitory factor (MIF), insulin like growth factor-II (IGF-II), interleukin-6 (IL-6), follistatin-related protein-1, minecan, and resistin. The existence of some of secreted proteins has been confirmed in RNA level. This proteomic experiment is useful for the intensive screening of secretory proteins in many kinds of other cells.

Keywords

References

  1. Keaney, J. F., Jr., Larson, M. G., Vasan, R. S., Wilson, P. W., Lipinska, I., Corey, D., Massaro, J. M., Sutherland, P., Vita, J. A. and Benjamin, E. J. : Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the Framingham Study. Arterioscler. Thromb. Vasc. Biol. 23, 434 (2003). https://doi.org/10.1161/01.ATV.0000058402.34138.11
  2. Gastaldelli, A., Miyazaki, Y., Pettiti, M., Matsuda, M., Mahankali, S., Santini, E., DeFronzo, R. A. and Ferrannini, E. : Metabolic effects of visceral fat accumulation in type 2 diabetes. J. Clin. Endocrinol. Metab. 87, 5098 (2002). https://doi.org/10.1210/jc.2002-020696
  3. Cook, K. S., Min, H. Y., Johnson, D., Chaplinsky, R. J., Flier J. S., Hunt, C. R. and Spiegelman, B. M. : Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science 237, 402 (1987). https://doi.org/10.1126/science.3299705
  4. Flier, J. S., Cook, K. S., Usher, P. and Spiegelman, B. M. : Severely impaired adipsin expression in genetic and acquired obesity. Science 237, 405 (1987). https://doi.org/10.1126/science.3299706
  5. Scherer, P. E., Williams, S., Fogliano, M., Baldini, G. and Lodish, H. F. : A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270, 26746 (1995). https://doi.org/10.1074/jbc.270.45.26746
  6. Qi, Y., Takahashi, N., Hileman, S. M., Patel, H. R., Berg, A. H., Pajvani, U. B., Scherer, P. E. and Ahima, R. S. : Adiponectin acts in the brain to decrease body weight. Nat. Med. 10, 524 (2004). https://doi.org/10.1038/nm1029
  7. Ohashi, K., Kihara, S., Ouchi, N., Kumada, M., Fujita, K., Hiuge, A., Hibuse, T., Ryo, M., Nishizawa, H., Maeda, N., Maeda, K., Shibata, R., Walsh, K., Funahashi, T. and Shimomura, I. : Adiponectin replenishment ameliorates obesity-related hypertension. Hypertension 47, 1108 (2006). https://doi.org/10.1161/01.HYP.0000222368.43759.a1
  8. Shibata, R., Sato, K., Pimentel, D. R., Takemura, Y., Kihara, S., Ohashi, K., Funahashi, T., Ouchi, N. and Walsh, K. : Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nat. Med. 11, 1096 (2005). https://doi.org/10.1038/nm1295
  9. Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., Banerjee, R. R., Wright, C. M., Patel, H. R., Ahima, R. S. and Lazar, M. A. : The hormone resistin links obesity to diabetes. Nature 409, 307 (2001). https://doi.org/10.1038/35053000
  10. Kim, K. H., Lee, K., Moon, Y. S. and Sul, H. S. : A cysteinerich adipose tissue-specific secretory factor inhibits adipocyte differentiation. J. Biol. Chem. 276, 11252 (2001). https://doi.org/10.1074/jbc.C100028200
  11. Rajala, M. W., Obici, S., Scherer, P. E. and Rossetti, L. : Adipose-derived resistin and gut-derived resistin-like moleculebeta selectively impair insulin action on glucose production. J. Clin. Invest. 111, 225 (2003).
  12. Fukuhara, A., Matsuda, M., Nishizawa, M., Segawa, K., Tanaka, M., Kishimoto, K., Matsuki, Y., Murakami, M., Ichisaka, T., Murakami, H., Watanabe, E., Takagi, T., Akiyoshi, M., Ohtsubo, T., Kihara, S., Yamashita, S., Makishima, M., Funahashi, T., Yamanaka, S., Hiramatsu, R., Matsuzawa, Y. and Shimomura, I. : Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science 307, 426 (2005). https://doi.org/10.1126/science.1097243
  13. Green, H. and Kehinde, O. : Sublines of mouse 3T3 cells that accumulate lipid. Cell 1, 113 (1974). https://doi.org/10.1016/0092-8674(74)90126-3
  14. Kratchmarova, I., Kalume, D. E., Blagoev, B., Scherer, P. E., Podtelejnikov, A. V., Molina, H., Bickel, P. E., Andersen, J. S., Fernandez, M. M., Bunkenborg, J., Roepstorff, P., Kristiansen, K., Lodish, H. F., Mann, M. and Pandey, A. : A proteomic approach for identification of secreted proteins during the differentiation of 3T3-L1 preadipocytes to adipocytes. Mol. Cell. Proteomics 1, 213 (2002). https://doi.org/10.1074/mcp.M200006-MCP200
  15. Wang, P., Mariman, E., Keijer, J., Bouwman, F., Noben, J. P., Robben, J. and Renes, J. : Profiling of the secreted proteins during 3T3-L1 adipocyte differentiation leads to the identification of novel adipokines. Cell. Mol. Life Sci. 61, 2405 (2004).
  16. Alvarez-Llamas, G., Szalowska, E., de Vries, M. P., Weening, D., Landman, K., Hoek, A., Wolffenbuttel, B. H., Roelofsen, H. and Vonk, R. J. : Characterization of the human visceral adipose tissue secretome. Mol. Cell. Proteomics 6, 589 (2007). https://doi.org/10.1074/mcp.M600265-MCP200
  17. Chiellini, C., Cochet, O., Negroni, L., Samson, M., Poggi, M., Ailhaud, G., Alessi, M. C., Dani, C. and Amri, E. Z. : Characterization of human mesenchymal stem cell secretome at early steps of adipocyte and osteoblast differentiation. BMC Mol. Biol. 9, 26 (2008). https://doi.org/10.1186/1471-2199-9-26
  18. Zvonic, S., Lefevre, M., Kilroy, G., Floyd, Z. E., DeLany, J. P., Kheterpal, I., Gravois, A., Dow, R., White, A., Wu, X. and Gimble, J. M. : Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol. Cell. Proteomics 6, 18 (2007). https://doi.org/10.1074/mcp.M600217-MCP200
  19. Trayhurn, P. and Beattie, J. H. : Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc. Nutr. Soc. 60, 329 (2001). https://doi.org/10.1079/PNS200194
  20. Matsuzawa, Y. : Therapy Insight: adipocytokines in metabolic syndrome and related cardiovascular disease. Nat. Clin. Pract. Cardiovasc. Med. 3, 35 (2006). https://doi.org/10.1038/ncpcardio0380
  21. Park, H. Y., Kwon, H. M., Lim, H. J., Hong, B. K., Lee, J. Y., Park, B. E., Jang, Y., Cho, S. Y. and Kim, H. S. : Potential role of leptin in angiogenesis: leptin induces endothelial cell proliferation and expression of matrix metalloproteinases in vivo and in vitro. Exp. Mol. Med. 33, 95 (2001). https://doi.org/10.1038/emm.2001.17
  22. Kern, P. A., Svoboda, M. E., Eckel, R. H. and Van Wyk, J. J. : Insulinlike growth factor action and production in adipocytes and endothelial cells from human adipose tissue. Diabetes 38, 710 (1989). https://doi.org/10.2337/diabetes.38.6.710
  23. Covey, D. C. and Albright, J. A. : Clinical induction of bone repair with demineralized bone matrix or a bone morphogenetic protein. Orthop. Rev. 18, 857 (1989).
  24. Aldinger, G., Herr, G., Kusswetter, W., Reis, H. J., Thielemann, F. W. and Holz, U. : Bone morphogenetic protein: a review. Int. Orthop. 15, 169 (1991).
  25. Chen, D., Ji, X., Harris, M. A., Feng, J. Q., Karsenty, G., Celeste, A. J., Rosen, V., Mundy, G. R. and Harris, S. E. : Differential roles for bone morphogenetic protein (BMP) receptor type IB and IA in differentiation and specification of mesenchymal precursor cells to osteoblast and adipocyte lineages. J. Cell. Biol. 142, 295 (1998). https://doi.org/10.1083/jcb.142.1.295
  26. Sottile, V. and Seuwen, K. : Bone morphogenetic protein-2 stimulates adipogenic differentiation of mesenchymal precursor cells in synergy with BRL 49653 (rosiglitazone). FEBS Lett. 475, 201 (2000). https://doi.org/10.1016/S0014-5793(00)01655-0
  27. Canalis, E. and Gabbitas, B. : Bone morphogenetic protein 2 increases insulin-like growth factor I and II transcripts and polypeptide levels in bone cell cultures. J. Bone. Miner. Res. 9, 1999 (1994).
  28. Le Roith, D. : Seminars in medicine of the Beth Israel Deaconess Medical Center. Insulin-like growth factors. N Engl. J. Med. 336, 633 (1997). https://doi.org/10.1056/NEJM199702273360907
  29. Ashton, I. K., Zapf, J., Einschenk, I. and MacKenzie, I. Z. : Insulin-like growth factors (IGF) 1 and 2 in human foetal plasma and relationship to gestational age and foetal size during midpregnancy. Acta. Endocrinol. (Copenh) 110, 558 (1985).
  30. Scacchi, M., Pincelli, A. I. and Cavagnini, F. : Growth hormone in obesity. Int. J. Obes. Relat. Metab. Disord. 23, 260 (1999). https://doi.org/10.1038/sj.ijo.0800807
  31. Funderburgh, J. L., Corpuz, L. M., Roth, M. R., Funderburgh, M. L., Tasheva, E. S. and Conrad, G. W. : Mimecan, the 25-kDa corneal keratan sulfate proteoglycan, is a product of the gene producing osteoglycin. J. Biol. Chem. 272, 28089 (1997). https://doi.org/10.1074/jbc.272.44.28089