References
- E. G. Chong, K. C. Jo, S. Y. Lee, Appl. Phys. Lett. 96, (2010), 037015.
- P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, J. Non-Cryst. Solids, 352, (2006), 1749. https://doi.org/10.1016/j.jnoncrysol.2006.01.067
- R. Martins, et al, J. Appl. Phys. 96, (2004), 1398. https://doi.org/10.1063/1.1765864
- S. H. Jeong, B. N Park, D. G Yoo, J. H Boo, and D. G Jung, J. Korean Phys. Soc. 50, (2007), 3.
- K. W. Kim, P. C. Debnath, D. H. Park, S. S. Kim, and S. Y. Lee, Appl. Phys. Lett. 96, (2010), 083103. https://doi.org/10.1063/1.3327826
- J. W. Kim, H. S. Kang, and S.Y. Lee, KIEE J. Electr. Eng. Technol. 1, (2006), 1, 98-100. https://doi.org/10.5370/JEET.2006.1.1.098
- B. S. Kim, D. E. Kim, G. C. Choi, J. W. Park, B. J. Lee and Y. S. Kwon, KIEE J. Electr. Eng. Technol. 4, (2009), 3, 418-422. https://doi.org/10.5370/JEET.2009.4.3.418
- E. Fortunato, A. Pimentel, A. Goncalves, A. Marques, R. Martins, Thin Solid Films. 502, (2006), 104. https://doi.org/10.1016/j.tsf.2005.07.311
- Y. K. Moon, S. Lee, J. W. Park, D. H. Kim, J. H. Lee and C. O Jeong, J. Korean Phys. Soc. 54, (2009), 1. https://doi.org/10.3938/jkps.54.1
- C. H. Jung, D. J. Kim, Y. K. Kang, and D. H. Yoon, Jpn. J. Appl. Phys. 48, (2009).
- K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, Nature (London). 432, (2004), 488. https://doi.org/10.1038/nature03090
- P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, and E. Fortunato, J. Electrochemical Society. 156, (2009), H161. https://doi.org/10.1149/1.3049819
- J. H. Jeong, H. W. Yang, J. S. Park, J. K. Jeong, Y. G Mo, H. D. Kim, J. Song, and C. S. Hwang, Electrochemical and Solid State Lett. 11, (2008), H157. https://doi.org/10.1149/1.2903209
- H. Hosono, K. Nomura, Y. Ogo, T. Uruga, T. Kamiya, J. Non-Cryst. Solids. 354, (2008), 2796. https://doi.org/10.1016/j.jnoncrysol.2007.10.071
- J. S. Park, J. K. Jeong, Y. G. Mo, H. D. Kim, and C. J. Kim, Appl. Phys. Lett. 93, (2008), 033513. https://doi.org/10.1063/1.2963978
- P. T. Liu, Y. T. Chou, and L. F. Teng, Appl. Phys. Lett. 95, 233504, 2009. https://doi.org/10.1063/1.3272016
- C. Kilic¸ and A. Zunger, Appl. Phys. Lett., 81, 73, 2002. https://doi.org/10.1063/1.1482783
- C. G. Van de Walle, Phys. Rev. Lett., 85, 1012, 2000. https://doi.org/10.1103/PhysRevLett.85.1012
- C. J. Park, Y. W. Kim, Y. J. Cho, S. M. Bobade and D. K. Choi, J. Korean Phys Soc. 55, (2009), 5. https://doi.org/10.3938/jkps.55.5
- Y. Orikasa, M. Hayashi, and S. Muranaka, J. Appl. Phys. 103, (2008), 113703. https://doi.org/10.1063/1.2937939
- Ibrahim Abdel-Motaleb, Neeraj Shetty, Kevin Leedy, and Rebecca Cortez, J. Appl. Phys. 109 (2011) 014503. https://doi.org/10.1063/1.3525998
- B. Theys, V. Sallet, F. Jomard, A. Lusson, J.-F. Rommelue're, and Z. Teukam, J. Appl. Phys. 91, (2002), 3922. https://doi.org/10.1063/1.1452778
- N. Ohashi, T. Ishigaki, N. Okada, T. Sekiguchi, I. Sakaguchi, and H. Haneda, Appl. Phys. Lett. 80, (2002), 2869. https://doi.org/10.1063/1.1470703
- E. Chong, Y. S. Chun, and S. Y. Lee, Electrochem. Solid-State Lett., 14, (2011) H96. https://doi.org/10.1149/1.3518518
Cited by
- Full swing depletion-load inverter with amorphous SiZnSnO thin film transistors vol.214, pp.2, 2017, https://doi.org/10.1002/pssa.201600469
- Effect of O2 plasma immersion on electrical properties and transistor performance of indium gallium zinc oxide thin films vol.545, 2013, https://doi.org/10.1016/j.tsf.2013.07.084
- Effect of Sputtering Power on the Change of Total Interfacial Trap States of SiZnSnO Thin Film Transistor vol.15, pp.6, 2014, https://doi.org/10.4313/TEEM.2014.15.6.328
- Effect of Sputtering Pressure on Surface Roughness, Oxygen Vacancy and Electrical Properties of a-IGZO Thin Films vol.45, pp.8, 2016, https://doi.org/10.1016/S1875-5372(16)30160-6
- Facile Encapsulation of Oxide based Thin Film Transistors by Atomic Layer Deposition based on Ozone vol.25, pp.20, 2013, https://doi.org/10.1002/adma.201300549
- Top-gate zinc tin oxide thin-film transistors with high bias and environmental stress stability vol.104, pp.25, 2014, https://doi.org/10.1063/1.4885362
- Temperature Effects on a-IGZO Thin Film Transistors Using HfO2Gate Dielectric Material vol.2014, 2014, https://doi.org/10.1155/2014/347858
- Efficient Defect Engineering for Solution Combustion Processed In-Zn-O thin films for high performance transistors vol.32, pp.9, 2017, https://doi.org/10.1088/1361-6641/aa7c72
- A study on the electrical and optical characteristics of IGZO films vol.25, pp.7, 2014, https://doi.org/10.1007/s10854-014-1986-z
- Effects of working pressure on morphology, structural, electrical and optical properties of a-InGaZnO thin films vol.47, pp.10, 2012, https://doi.org/10.1016/j.materresbull.2012.04.050
- Investigation on the variation of channel resistance and contact resistance of SiZnSnO semiconductor depending on Si contents using transmission line method vol.139, 2018, https://doi.org/10.1016/j.sse.2017.09.015
-
Effects of Working Pressure on the Physical Properties of a-InGaZnO
x Films Formed Using Inductively Coupled Plasma-Enhanced Reactive Sputtering Deposition vol.44, pp.12, 2016, https://doi.org/10.1109/TPS.2016.2593458 - Performance of Solution Processed Zn-Sn-O Thin-film Transistors Depending on Annealing Conditions vol.16, pp.2, 2015, https://doi.org/10.4313/TEEM.2015.16.2.62
- Effect of Post Annealing in Oxygen Ambient on the Characteristics of Indium Gallium Zinc Oxide Thin Film Transistors vol.27, pp.10, 2014, https://doi.org/10.4313/JKEM.2014.27.10.648
- Effect of Annealing Time on Electrical Performance of SiZnSnO Thin Film Transistor Fabricated by RF Magnetron Sputtering vol.16, pp.2, 2015, https://doi.org/10.4313/TEEM.2015.16.2.99
- The effect of sputter growth conditions on the charge transport and stability of In-Ga-Zn-O semiconductors vol.638, 2017, https://doi.org/10.1016/j.tsf.2017.08.008
- Non-monotonic Size Dependence of Electron Mobility in Indium Oxide Nanocrystals Thin Film Transistor vol.35, pp.8, 2014, https://doi.org/10.5012/bkcs.2014.35.8.2505
- Blue shift in the optical bandgap of tin oxide thin films by controlling oxygen-to-argon gas flow ratio vol.08, pp.01, 2015, https://doi.org/10.1142/S1793604715500149
- Effects of Substrate Temperature on Structural, Electrical and Optical Properties of Amorphous In-Ga-Zn-O Thin Films vol.1, pp.1, 2012, https://doi.org/10.1149/2.032201jss
- Study of Electronic Structure and Film Composition at the Back Channel Surface of Amorphous In-Ga-Zn-O Thin Films vol.2, pp.4, 2013, https://doi.org/10.1149/2.014304jss
- Effect of Nitrogen Doping on the Electrical Performance of Amorphous Si–In–Zn–O Thin Film Inverter pp.2092-7592, 2018, https://doi.org/10.1007/s42341-018-0082-0
- Effect of Oxygen Pressure on Electrical Property of a-SZTO Thin Film Transistor pp.2092-7592, 2018, https://doi.org/10.1007/s42341-018-0065-1
- Low-Temperature-Processed SiInZnO Thin-Film Transistor Fabricated by Radio Frequency Magnetron Sputtering vol.19, pp.3, 2018, https://doi.org/10.1007/s42341-018-0042-8
- treatment for indium zinc oxide thin film transistors with solution-based multiple active layer vol.57, pp.6S3, 2018, https://doi.org/10.7567/JJAP.57.06KB01
- Electrical, Structural, Optical, and Adhesive Characteristics of Aluminum-Doped Tin Oxide Thin Films for Transparent Flexible Thin-Film Transistor Applications vol.12, pp.1, 2019, https://doi.org/10.3390/ma12010137