DOI QR코드

DOI QR Code

Effect of Supplementary Actinomycetes (Nocardia sp. CS682) Ferment on the Performance, Blood Parameters, Immunoglobulin and Small Intestinal Microflora Contents in Broilers

방선균(Nocardia sp. CS682) 발효물의 급여가 육계의 생산성, 혈액성상, 면역글로불린 및 소장 내 미생물 함량에 미치는 영향

  • Rhee, Ah-Reum (Department of Animal Science and Technology, Chung-Ang University) ;
  • Shin, Dong-Hun (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kim, Chan-Ho (Department of Animal Science and Technology, Chung-Ang University) ;
  • Jung, Byoung-Yun (Department of Poultry Science, University of Georgia) ;
  • Yoo, Jin-Chul (Department of Pharmacy, College of Pharmacy, Chosun University) ;
  • Hong, Yong-Ho (Department of Animal Science and Technology, Chung-Ang University) ;
  • Paik, In-Kee (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2010.12.31
  • Accepted : 2011.02.16
  • Published : 2011.03.31

Abstract

This study was conducted to investigate the effects of dietary supplementation of CS682, a fermentation product of Actinomycetae Nocardia sp. CS682, and DCS682$^{(R)}$, a commercial product, on the performance, blood parameters, small intestinal microflora, and immunoglobulin contents in broilers. In Exp. 1, a total of 240 ROSS$^{(R)}$ broiler chickens of 1d old were assigned to six dietary treatments: Control, Antibiotics (6 ppm avilamycin), CS682-0.25 (CS682 0.25%), CS682-0.50, CS682-0.75 and CS682-1.00. There were significant (p<0.05) differences among treatments in feed conversion. The CS682-0.25 treatment was significantly (p<0.05) lower than Antibiotics and other CS682 treatments in 0~2 wk feed conversion. The CS682 treatments influenced MCV (mean corpuscular volume) in blood. The cfu of Escherichia coli in small intestinal content was lowest in Antibiotics treatment followed by CS682 treatments and Control. In Exp. 2, a total of 1,000 ROSS$^{(R)}$ broiler chickens of 1 d old were assigned to five dietary treatments: Control, Antibiotics (6 ppm avilamycin), DCS682-0.05 (DCS682$^{(R)}$ 0.05%), DCS682-0.10 and DCS682-0.20. There were significant differences (p<0.05) among treatments in mortality. The DCS682-0.20 treatment was lower than DCS682-0.10 in 0~3 wk and lower than Control in 0~5 wk mortality. Antibiotics treatment was lowest in all microbial population in small intestinal content. The cfu of E. coli and Salmonella typhimurium of DCS682 treatments were higher than Antibiotics treatment but lower than the Control. The results of present broiler experiments indicated that supplementation of 0.20~0.25% CS682 and DCS682, improve feed conversion, mortality and control harmful intestinal microbes.

이 실험은 방선균 목(目) 노카르디아 종 CS682 균주의 발효물 CS682와 이를 바탕으로 한 제품 DCS682$^{(R)}$를 육계에게 급여 시 생산성, 혈액 성상, 소장 내 미생물, 면역성에 관한 효과를 알아보기 위해 실시하였다. 시험1은 갓부화한 총 240수의 육계(ROSS$^{(R)}$)를 공시하였으며, 처리는 대조구, 항생제구, CS682-0.25(CS682 0.25%), CS682-0.50, CS682-0.75, CS682-1.00 등 6처리였다. 각 처리구 간의 사료 요구율에 유의한(p<0.05) 차이가 있었다. CS682-0.25 처리구는 항생제구와 다른 CS682 처리구들에 비해 0~2주 동안 사료 요구율이 유의적으로 감소했으나 대조구와는 차이가 없었다. 혈액성상에서는 CS682 처리구들이 MCV(mean corporal volume)에 유의한 영향을 미쳤다. 소장 내용물 중 E. coli 수는 항생제구가 가장 낮았고 다음으로 CS682구들 그리고 대조구였다. 시험 2는 갓 부화한 총 1,000수의 육계(ROSS$^{(R)}$)를 공시하였으며, 처리는 대조구, 항생제구, DCS682-0.05(DCS682$^{(R)}$-0.05%), DCS682-0.1, DCS682-0.2 등 5처리였다. DCS682-0.2처리구는 DCS682-0.1 처리구에 비해 0~2주 폐사율이 유의적(P<0.05)으로 감소하였고, 대조구에 비해 0~5주 폐사율이 유의적(P<0.05)으로 감소하였다. 항생제구는 소장내 universal bacteria, Lactobacillus, Salmonella typhimurium 그리고 E. coli 수는 다른 처리구들에비해 유의적으로 (P<0.05) 감소하였으며 DCS682 처리구들은 E. coli와 S. Typhimurium수에서 항생제 처리구보다는 높았으나 대조구보다는 낮았다. 결론적으로 본 시험의 연구 결과는 CS682-0.25 또는 DCS682-0.20을 육계 사료에 첨가 시 사료 요구율을 개선하는 경향이 있었고, 폐사율을 감소시키며 장내 유해 미생물을 억제하는 효과를 나타내었다.

Keywords

References

  1. Anadon A, Martnez-Larranaga MR 1999 Residues of antimicrobial drugs and feed additives in animal products: regulatory aspects. Livestock Production Sci 59:183-198. https://doi.org/10.1016/S0301-6226(99)00026-3
  2. Boyd LH 1994 Regulation of drugs and chemicals used by the poultry industry: Good manufacturing practices. J Poultry Sci 73(9):1419-1422. https://doi.org/10.3382/ps.0731419
  3. Celmer WD, Chmurny GN, Moppet CE, Ware RS, Watts PC, Whipple EB 1980 Structure of natural antibiotic CP-47,444. J Am Chem Soc 102(12):4203-4209. https://doi.org/10.1021/ja00532a036
  4. Chapman HD, Johnson ZB 2002 Use of antibiotics and roxarsone in broiler chickens in the USA: Analysis for the Years 1995 to 2000. Poultry Sci 81(3):356-364. https://doi.org/10.1093/ps/81.3.356
  5. Cho SS, Sohng JK, Lee HJ, Park SJ, Simkhada JR, Yoo JC 2009 Qauntitative analysis of nargenicin in Nocardia sp. CS682 culture by high performance liquid chromatography. Arch Pharm Res 32(3):335-340. https://doi.org/10.1007/s12272-009-1304-0
  6. Damron BL, Wilson HR, Fell RV 1991 Growth of performance of broiler breeders fed bacitracin metheylene disalicylate and zinc bacitracin. Poultry Sci 70:1487-1492. https://doi.org/10.3382/ps.0701487
  7. Eric C 2006 Antibiotic production by Actinomycetes: The Janus faces of regulation. J Ind Microbiol Biotechnol 33(7):500-506. https://doi.org/10.1007/s10295-006-0083-6
  8. Heilig HGHJ, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, Willem DV 2002 Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68(1):114-123. https://doi.org/10.1128/AEM.68.1.114-123.2002
  9. Jeffries L, Coleman K, Bunyan J 1997 Antimicrobial substances and chick growth promotion: Comparative studies on selected compounds in vitro and in vivo. Br Poultry Sci 18:295-308.
  10. Jennifer AU, Shiao YW, David FU, Ellender RD 2007 Methanobrevibacter ruminantium as an indicator of domesticatedruminant fecal pollution in surface waters. Applied and Environmental Microbiology 73(21):7118-7121. https://doi.org/10.1128/AEM.00911-07
  11. Jin LS, Ho YW, Avdullah N, Ali NA, Jalaludin S 1998 Effects of adherent Lactobacillus culturs on growth, weight of organs and intestinal microflora and volatile fatty acid in broilers. Animal Feed Sci Tech 70:197-209. https://doi.org/10.1016/S0377-8401(97)00080-1
  12. John MS 1961 Antibiotic properties of acrlic acid, a factor in the gastrointestinal antibiosis of polar marine animals. J Bacteriol Sieburth 82(1):72-79.
  13. Krudger WF, Bradley JW, Creger CR 1983 Effect if feeding bacitracin zinc on reproduction in broiler breeders. Poultry Sci 62:1450-1451.
  14. Lee JC, Ahn TH, Kang SS, Moon CJ, Bae CS, Kim SH, Yoo JC, Kim JC 2007 Single oral dose toxicity evaluation of CS682, a fermentation production of Korean soil bacteria, in rats. Lab Anim Res 23(4):401-404.
  15. Malinen E, Kassinen A, Rinttila T, Palva A 2003 Comparison of real-time PCR with SYBR Green I or 5'-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiol 149:269-277. https://doi.org/10.1099/mic.0.25975-0
  16. Mancini G, Carbonara AO, Heremans JF 1965 Immunochemical quantitation of antigens by single radial immunodiffusion. J Immunol 2:235-234.
  17. Melvin JS 1984 Physiological properties and cellular and chemical constituents of blood. Ducks' Physiological of Domestic Animals. 10th Ed.
  18. Moore PR, Evenson A, Luckey TD, McCoy E, Elvehjemande CA, Hart B 1946 Use of sulfasuxidine, streptohricin, and streptomycin in nutritional studies with the chick. J Biol Chem 165:437-441.
  19. Murray B 1995 What can we do about vancomycin-resistant enterococci? Clin Infect Dis 20:1134-1136. https://doi.org/10.1093/clinids/20.5.1134
  20. NRC 1994 Nutrient Requirments of Poultry. National Research Council National Academy of Science Washington, D.C.
  21. $ROSS^{\circledR}$ broiler manual Aviagen 2009 pp.101.
  22. Rutledge RG, Cote C 2003 Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31(16):1-6. https://doi.org/10.1093/nar/gkg120
  23. Safalaoh ACL 2006 Body weight gain, dressing percentage, abdominal fat and serum cholesterol of broilers supplemented with a microbial preparation. African Journal of Food Agriculture Nutrition and Development. 6(1):1-10.
  24. SAS Institute 1996 $SAS/STAT^{\circledR}$ User's Guide Release 6.12 Edition SAS Institute Inc Cary Nc USA.
  25. Shin HT, Bae ID, Chung KW, Kim YK, Shon JH, Lee SK 1990 Evaluation of Live Yeast Culture as Source of Probiotics for Broiler. 5th AAAP 3:1.
  26. Shin IS, Lee JC, Park NH, Kang SS, Moon CJ, Kim SH, Shin DH, Yoo JC, Kim JC 2009 Subacute toxicity study of CS682, a fermentation product of Korean soil bacteria, in rats. Lab Ani Res 25(1):7-13.
  27. Sohng JK, Yamaguchi T, Seong CN, Baik KS, Park SK, Lee HJ, Jang SY, Simkhada JR, Yoo JC 2008 Production, isolation and biological activity of nargenicin from Nocardia sp. CS682. Arch Pharm Res 31(10):1339-1345. https://doi.org/10.1007/s12272-001-2115-0
  28. Songjinda P, Nakayama J, Tateyama A, Tanaka S, Tsubouchi M, Kiyohara C, Shirakawa T, Sonomoto K 2007 Differences in developing intestinal microbiota between allergic and nonallergic infant:a pilot study in Japan. Biosci Biotechnol Biochem 71(9):2238-2242.
  29. Steel RGD, Torrie JH 1980 Principles and Procedures of Statics 2nd ed: A Biometrical Approach. McGraw-Hill Publishing Co., NY.
  30. Tim JD, Janet EH, Sean MH, Andrew GVK 2006 Characterization of intestinal microbiota and response to dietary virginiamcin supplementation in the broiler chicken. Applied and Environmental Microbiology Apr 72(4):2815-2823. https://doi.org/10.1128/AEM.72.4.2815-2823.2006
  31. Timmerman HM, Veldman A, Van den Elsen E, Rombouts FM, Beynen AC 2006 mortality and growth performance of broilers given drinking water supplemented with chicken-specific probiotics. Poultry Sci 85(8):1383-1388. https://doi.org/10.1093/ps/85.8.1383
  32. Waldroup PW, Edger O, Oviedo-Rondon, Fritts CA 2003 Comparison of Bio-MOS and antibiotic feeding programs in broiler diets containing copper sulfate. International Journal of Poultry Sci 2(1):28-31. https://doi.org/10.3923/ijps.2003.28.31
  33. Widjojoatmodjo MN, Fluit AC, Torensma R, Kellerand BHI, Verhoef J 1991 Evaluation of magnetic immuno PCR assay for rapid detection of Salmonella. Eur J Clin Microbiol Infect Dis 10(11):935-938. https://doi.org/10.1007/BF02005447
  34. Xu ZR, Hu CH, Xia IMS, Zhan XA, Wang MQ 2003 Effects of dietary fructooligosaccharide on digestive enzyme activities, intestinal microflora and morphology of male broilers. Poultry Sci 82(6):1030-1036. https://doi.org/10.1093/ps/82.6.1030
  35. Yoo JC, Han JM, Nam SK, Baik KS, Jo JS, Seong CN 2002 Characterization of a streptomycete isolate producing the potent cytotoxic substance, nonadecanoic acid. The Journal of Microbiology 40(2):178-181.
  36. 김인호 김춘수 1988 활성효모(Saccharomyces cerevisiae) 급여가 브로일러의 육성성장에 미치는 영향. 한국가금학회지 15(4):277-280.
  37. 김찬호 우경천 김근배 박용하 백인기 2010 혼합 또는 단일 생균제가 산란계와 육계의 생산성, 소장내 미생물 균총 및 면역체계에 미치는 영향. 한국가금학회지 37(1):51-62.
  38. 박대영 남궁 환 백인기 2002 Yeast Culture(Saccharomyces cerevisiae, Pichia pastoris)가 육계의 생산성, 소장내 미생물 균총 및 혈청 IgG 농도에 미치는 영향. 한국동물자원과학회지 44(3):289-296. https://doi.org/10.5187/JAST.2002.44.3.289