DOI QR코드

DOI QR Code

Effect of Supplementary Actinomycetes (Nocardia sp. CS682) Ferment on the Laying Performance, Blood Parameters, Immunoglobulin and Small Intestinal Microflora Contents in Laying Hens

방선균(Nocardia sp. CS682) 발효물의 급여가 산란계의 생산성, 혈액성상, 면역글로불린 및 소장내 미생물 함량에 미치는 영향

  • Rhee, Ah-Reum (Department of Animal Science and Technology, Chung-Ang University) ;
  • Shin, Dong-Hun (Department of Animal Science and Technology, Chung-Ang University) ;
  • Kim, Chan-Ho (Department of Animal Science and Technology, Chung-Ang University) ;
  • Jung, Byoung-Yun (Department of Poultry Science, The University of Georgia) ;
  • Yoo, Jin-Chul (Department of Pharmacy, College of Pharmacy, Chosun University) ;
  • Hong, Young-Ho (Department of Animal Science and Technology, Chung-Ang University) ;
  • Paik, In-Kee (Department of Animal Science and Technology, Chung-Ang University)
  • Received : 2010.12.24
  • Accepted : 2011.03.03
  • Published : 2011.03.31

Abstract

This study was conducted to investigate the effects of dietary supplementation of CS682, a fermentation product of Actinomycetae(Nocardia sp. CS682), and its commercial product DSC682$^{(R)}$ on the performance, blood parameters, intestinal microflora, and immune response in laying hens. Hy-Line Brown$^{(R)}$ laying hens were housed in two bird cages. Feeding trial lasted 5 wk under 16.5 h:7.5 h(L:D) lighting regimen. In Exp.1, a total of 480 birds of 86 wk old were assigned to four dietary treatments: Control, Antibiotics (6 ppm avilamycin), CS682-0.1 (CS682 0.1%) and CS682-1.0 (CS682 1.0% supplementation). Each treatment was replicated five times with 24 birds (or 12 cages) per replication. In Exp. 2, a total of 1,000 birds of 26 wk old were assigned to five dietary treatments: Control, Antibiotics (6 ppm avilamycin), DCS682-0.05 (DCS682 0.05%), DCS682-0.1 (DCS682 0.1%), DCS682-0.2 (DCS682 0.2% supplementation). Each treatment was replicated five times with 40 birds (or 20 cages) per replication. In Exp. 1, there were no significant differences among treatments in egg production, egg weight, broken & soft egg production, feed intake, and feed conversion ratio. Also, there were no significant differences among treatments in eggshell thickness, eggshell color and Haugh unit. However, eggshell strength was significantly (p<0.05) greater in CS682 and Antibiotics treatments than Control, and egg yolk color was significantly (p<0.05) higher in CS682-1.0 than Control. In Exp. 2, feed intake was significantly (p<0.05) lower in DSC682-0.05 than Control. Lightness(L) of Hunter Lab color of eggshell of DCS and Antibiotics treatments was significantly (p<0.05) lower than Control. Egg yolk color of DCS 0.1 and 0.2 treatments was significantly (p<0.05) higher than Control. Haugh unit increased significantly (p<0.05) in Antibiotics and DCS682-0.1 treatments. The immunoglobulin levels of plasma (IgG and IgA) and eggyolk (IgY) were not significantly affected by treatments. Antibiotics and CS682 or DCS682 treatments significantly (p<0.05 or 0.01) influenced some of the erythrocytes and leukocytes parameters in blood. In Exp.1, mean corpuscular volume (MCV) decreased by CS682 treatments and mean corpuscular hemoglobin (MCH) was highest in Antibiotics treatments. In Exp.2, the level of monocyte (MO) decreased in DCS682-0.10 and 0.20 treatments. The cfu of C. perfringens and S. typhimurium in small intestinal content were highest in Control and lowest in Antibiotics in both experiments. In Exp. 2, DSC682-0.05 and -0.1 treatments were highest and Antibiotic treatment was lowest in Lactobacilli spp. The results of the present layer experiments indicated that supplementation of 0.1~0.2% CS682 or DCS682 may increase eggshell strength, color of eggshell and eggyolk, Haugh unit, and control harmful intestinal microbes.

본 연구는 방선균 목 노카르디아 종 CS682 균주의 발효물 CS682와 이를 바탕으로 한 제품 DSC682$^{(R)}$를 산란계에게 급여 시 산란 생산성, 난품질, 혈액 성상, 소장 내 미생물, 면역성에 미치는 효과를 알아보기 위해 실시하였다. 실험은 Hy-Line Brown$^{(R)}$ 갈색 산란계로 실시하였는데, 실험 1은 86주령, 실험 2는 26주령의 실험계를 2단 4열 2수 케이지에 수용하여 실시하였다. 실험 1은 대조구, 항생제구(avilamycin 6 ppm), CS 682-0.1(CS682 0.1%), CS682-1.0(CS682 1.0% 첨가) 등 4 처리였으며, 5반복, 반복당 24수(12케이지), 총 480수로 실시하였고, 실험2는대조구, 항생제구(avilamycin 6 ppm), DCS682-0.05(DCS682$^{(R)}$ 0.05%), DSC682-0.1(DCS682$^{(R)}$ 0.1%), 그리고 DCS682-0.2(DCS682$^{(R)}$ 0.2% 첨가) 등 5처리였으며 5반복, 반복당 40수(20케이지), 총 1,000수로 실시하였다. 실험 1에서는 산란율, 난중, 연 파란율, 사료 섭취량, 사료 전환율 등 산란 생산성에는 유의한 차이가 없었다. 난품질에서 난각 강도는 항생제구와 CSC682 처리구들이 유의적(p<0.05)으로 높았으며, 난황색은 CSC682-1.0 처리구가 유의적(p<0.05)으로 높았다. 실험 2에서는 산란 생산성에서 사료 섭취량이 DCS682-0.05구가 대조구와 비교하여 유의적(p<0.05)으로 낮았다. 난각색에서 Hunter Lab color L(Lightness) 즉 밝기가 항생제구와 DCS682 처리구들이 유의적(p<0.05)으로 낮았다. 난황색은 DCS682-0.1~0.2구들이 유의적(p<0.05)으로 높았으며, Haugh unit은 항생제구와 DCS682-0.1구가 유의적(p<0.05)으로 높았다. 실험 1과 2에서 혈장 면역글로부린(IgG, IgA) 및 난황 면역그로부린(IgY)의 함량은 처리구간에 유의한 차이가 없었다. 실험1에서 erythrocytes 중 평균 적혈구 용적(MCV)은 대조구가 유의적(p<0.05)으로 높았으며, 평균 적혈구 혈색소량(MCH)은 항생제구가 유의적으로 높았다. 실험 2에서는 leukocytes 중 단핵구(MO)에서 대조구와 DCS682-0.05구가 유의적으로(p<0.05 또는 0.01) 높았다. 실험 1에서 C. perfringens수는 항생제구에서 대조구와 비교하여 유의적으로(p<0.05) 감소하였다. S. typhimurium수는 유의적으로(p<0.05) 차이가 있었는데 항생제구가 가장 낮았고 다음으로 CS682 처리구들이었으며 대조구에서 가장 높았다. Universal bacteria, Lactobacillus 그리고 E. coli의 수는 처리간에 유의적인 차이가 없었다. 실험 2에서는 Lactobacillus 수가 DCS682-0.05와 DCS682-0.1구들에서 유의적으로(p<0.05) 높았고 다음으로 대조구와 DCS682-0.2 첨가구였으며 항생제구가 가장 낮았다. C. perfringens 수는 항생제구에서 대조구와 비교하여 유의적(p<0.05)으로 감소하였다. S. Typhimurium은 처리간에 유의적인(p<0.05) 차이가 있었는데 항생제구가 가장 낮았고 다음으로 DCS682-0.2이었으며, DCS682-0.05와 0.1구들은 대조구보다는 낮았으나 유의한(p<0.05) 차이는 없었다. 결론적으로 CS682 0.1% 또는 DCS682 0.1~0.2% 첨가는 난각 강도, 난황색, 난각색, Haugh unit를 개선시키고, 소장 내유해 미생물을 억제하는 긍정적인 효과를 보였다.

Keywords

References

  1. Amit-Romach E, Sklan D, Uni Z 2004 Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poultry Sci 83:1093-1098. https://doi.org/10.1093/ps/83.7.1093
  2. Anadon A, Martnez-Larranaga MR 1999 Residues of antimicrobial drugs and feed additives in animal products: Regulatory aspects. Livestock Production Sci 59:183-198. https://doi.org/10.1016/S0301-6226(99)00026-3
  3. Arakawa A, Oe O 1975 Reduction of Clostridium perfringens by feed additive antibiotics in the ceca of chickens infected with Eimeria tenella. Poultry Sci 54(4):1000-1007. https://doi.org/10.3382/ps.0541000
  4. Bird HR 1969 Biological Basis for the Use of Antibiotics in PoulTry Feed. Proc Symp NAS Washington D.C. USA.
  5. Carita Schneitz 2005 Competitive exclusion in poultry - 30 years of research. Food Control 16(15):657-667. https://doi.org/10.1016/j.foodcont.2004.06.002
  6. Cho SS, Sohng JK, Lee HJ, Park SJ, Jaya RS, Yoo JC 2009 Quantitative analysis of nargenicin in Nocardia sp. CS682 culture by high performance liquid chromatography. Arch Pharm Res 32(3):335-340. https://doi.org/10.1007/s12272-009-1304-0
  7. Collier CT, van der Klis JD, Deplancke B, Anderson DB, Gaskins HR 2003 Effects of tylosin on bacterial mucolysis, Clostridium perfringens colonization, and intestinal barrier function in a chick model of necrotic enteritis. Antimicrob Agents and Chemother 47(10):3311-3317. https://doi.org/10.1128/AAC.47.10.3311-3317.2003
  8. Eisen EJ, Bohren BB, McKean HE 1962 The Haugh unit as a measure of egg albumen quality. Poultry Sci 41:1361-1468.
  9. Hatta H, Sim JS, Nakai S 1988 Separation of phospholipids from egg yolk and recovery of water-soluble proteins. J Food Sci 53:425-427. https://doi.org/10.1111/j.1365-2621.1988.tb07721.x
  10. Hatta H, Kim M, Yamamoto T 1990 A novel isolation method for hen egg yolk antibody, "IgY". Agric Biol Chem 54:2531-2535. https://doi.org/10.1271/bbb1961.54.2531
  11. Heilig HGHJ, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, Willem DV 2002 Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68(1):114-123. https://doi.org/10.1128/AEM.68.1.114-123.2002
  12. Immerseel FV, Buck JD, Pasmans F, Huyghebaert G, Haesebrouck F, Ducatelle R 2004 Clostridium perfringens in poultry: An emerging threat for animal and public health. Avian Pathol 33(6):537-549. https://doi.org/10.1080/03079450400013162
  13. Jennifer AU, Shiao YW, David FU, Ellender RD 2007 Methanobrevibacter ruminantium as an indicator of domesticated-ruminant fecal pollution in surface waters. Appl Environ Microbiol 73(21):7118-7121. https://doi.org/10.1128/AEM.00911-07
  14. Jin LS, Ho YW, Abdullah N, Jalaludin S 1998 Growth performance, intestinal microbial populations, and serum cholesterol of broilers fed diets containing Lactobacillus cultures. Poultry Sci 77(9):1259-1265. https://doi.org/10.1093/ps/77.9.1259
  15. Lee JC, Ahn TH, Kang SS, Moon CJ, Bae CS, Kim SH, Yoo JC, Kim JC 2007 Single oral dose toxicity evaluation of CS682, a fermentation product of Korean soil bacteria, in rats. Lab Anim Res 23(4):401-404.
  16. Li L, Xu CL, Ji C, Ma Q, Hao K, Jin ZY, Li K 2006 Effects of a dried Bacillus subtilis culture on egg quality. Poultry Sci 85(2):364-368. https://doi.org/10.1093/ps/85.2.364
  17. Lim DV 1992 Effect of diet quality and Yea-Sacc1026 on performance of commercial layers. Biotechnology in the Feed Industry. Alltech Publ, Ky. p 412.
  18. Malinen E, Kassinen A, Rinttila T, Palva A 2003 Comparison of real-time PCR with SYBR Green I or 5'-nuclease assays and dot-blot hybridization with rDNA-targeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiol 149:269-277. https://doi.org/10.1099/mic.0.25975-0
  19. Mancini G, Carbonara AO, Heremans JF 1965 Immunochemical quantitation of antigens by single radial immunodiffusion. Immunochemistry 2(3):235-254. https://doi.org/10.1016/0019-2791(65)90004-2
  20. Maria B, Wanda S, Andrzej KS, Roman WJ, Elzbieta B, Andrzej O, Signe K, Jan J, Barbara KW, Daniela H 2010 The effect of various probiotic strains or avilamycin feed additive on immune defense markers and acute-phase response to Salmonella infection in chickens. Probiotics & Antimicro Prot 2(3):175-185. https://doi.org/10.1007/s12602-010-9054-3
  21. Melvin JS 1984 Physiological properties and cellular and chemical constituents of blood. Ducks' Physiological of Domestic Animals. 10th Ed.
  22. Murray BE 1995 What can we do about vancomycin-resistant enterococci. Clin Infect Dis 20:1134-1136. https://doi.org/10.1093/clinids/20.5.1134
  23. NRC 1994 Nutrient Requirments of Poultry. National Reasearch Council. National Academy of Science. Washington, D.C.
  24. Richard KG, Henry DS, Peter SH 1993 Evaluation of the efficacy of oil-emulsion bacterins for reducing fecal shedding of Salmonella enteritidis by laying hens. Avian Dis 37(4):1085-1091. https://doi.org/10.2307/1591918
  25. Rutledge RG, Cote C 2003 Mathematics of quantitative kinetic PCR and the application of standard curves. Nucleic Acids Res 31(16):1-6. https://doi.org/10.1093/nar/gkg120
  26. SAS Institute 1996 SAS/STAT User's Guide Release 6.12 Edition SAS Institute Inc Cary Nc USA.
  27. Shin IS, Lee JC, Park NH, Kang SS, Moon CJ, Kim SH, Shin DH, Yoo JC, Kim JC 2009 Subacute toxicity study of CS682, a fermentation product of Korean soil bacteria, in rats. Lab Ani Res 25(1):7-13.
  28. Sohng JK, Yamaguchi T, Seong CN, Baik KS, Park SK, Lee HJ, Jang SY, Simkhada JR, Yoo JC 2008 Production, isolation and biological activity of nargenicin from Nocardia sp. CS682. Arch Pharm Res 31:1339-1345. https://doi.org/10.1007/s12272-001-2115-0
  29. Songjinda P, Nakayama J, Tateyama A, Tanaka S, Tsubouchi M, Kiyohara C, Shirakawa T, Sonomoto K 2007 Differences in developing intestinal microbiota between allergic and non-allergic infant: A pilot study in Japan. Biosci Biotechnol Biochem 71(9):2238-2242.
  30. Steel RGD, Torrie JH 1980 Principles and Procedures of Statics (2nd Ed.) a Biometrical Approach. McGraw-Hill Publishing Co., New York, NY.
  31. Tim JD, Janet EH, Sean MH, Andrew GVK 2006 Characterization of intestinal microbiota and response to dietary virginiamycin supplementation in the broiler chicken. Applied and Environmental Microbiology Apr 72(4):2815-2823. https://doi.org/10.1128/AEM.72.4.2815-2823.2006
  32. Van Immerseel F, Cauwerts K, Devriese LA, Haesebrouck Fand Ducatelle R 2002 Feed additives to control Salmonella in poultry. World's Poult Sci 58:501-513. https://doi.org/10.1079/WPS20020036
  33. Widjojoatmodjo MN, Fluit AC, Torensma R, Kellerand BHI, Verhoef J 1991 Evaluation of magnetic immuno PCR assay for rapid detection of Salmonella. Eur J Clin Microbiol Infect Dis 10(11):935-938. https://doi.org/10.1007/BF02005447
  34. 김찬호 우경천 김근배 박용하 백인기 2010 혼합 또는 단일 생균제가 산란계와 육계의 생산성, 소장내 미생물 균총 및 면역 체계에 미치는 영향. 한국가금학회지 37(1):51-62. https://doi.org/10.5536/KJPS.2010.37.1.051
  35. 박대영 남궁환 백인기 2002 Yeast Culture (Saccharomyces cerevisiae, Pichia pastoris)가 육계의 생산성, 소장내 미생물 균총 및 혈청 IgG 농도에 미치는 영향. 한국동물자원과학회지 44:289-296. https://doi.org/10.5187/JAST.2002.44.3.289
  36. 이을연 이봉덕 지설하 박홍석 1995 생효모배양물의 급여가 산란계의 생산성에 미치는 영향. 한국가금학회지 22(2):77-84.