DOI QR코드

DOI QR Code

Molecular structure effects of the pitches on preparation of activated carbon fibers from electrospinning

  • Kim, Bo-Hye (Alan G. MacDiarmid Energy Research Institute, Chonnam National University) ;
  • Wazir, Arshad Hussain (Alan G. MacDiarmid Energy Research Institute, Chonnam National University) ;
  • Yang, Kap-Seung (Alan G. MacDiarmid Energy Research Institute, Chonnam National University) ;
  • Bang, Yun-Hyuk (R&D Business Labs, Hyosung Corporation) ;
  • Kim, Sung-Ryong (R&D Business Labs, Hyosung Corporation)
  • Received : 2011.02.25
  • Accepted : 2011.03.25
  • Published : 2011.06.30

Abstract

Two pitches with different average molecular structures were electrospun and compared in terms of the properties of their fibers after oxidative stabilization, carbonization, and activation. The precursor with a higher molecular weight and greater content of aliphatic groups (Pitch A) resulted in better solubility and spinnability compared to that with a lower molecular weight and lower aliphatic group content (Pitch B). The electrical conductivity of the carbon fiber web from Pitch A of 67 S/cm was higher than that from Pitch B of 52 S/cm. The carbon fiber web based on Pitch A was activated more readily with lower activation energy, resulting in a higher specific surface area compared to the carbon fiber based on Pitch B (Pitch A, 2053 $m^2/g$; Pitch B, 1374 $m^2/g$).

Keywords

References

  1. Burchell TD. Carbon Materials for Advanced Technologies, Pergamon, Amsterdam, 95-118 (1999).
  2. Li Z, Kruk M, Jaroniec M, Ryu SK. Characterization of structural and surface properties of activated carbon fibers. J Colloid Interface Sci, 204, 151 (1998). doi: 10.1006/jcis.1998.5515.
  3. Ryu Z, Rong H, Zheng J, Wang M, Zhang B. Microstructure and chemical analysis of PAN-based activated carbon fibers prepared by different activation methods. Carbon, 40, 1144 (2002). doi:10.1016/s0008-6223(02)00105-7.
  4. Jansen RJJ, van Bekkum H. XPS of nitrogen-containing functional groups on activated carbon. Carbon, 33, 1021 (1995). doi:10.1016/0008-6223(95)00030-h.
  5. Yang CM, El-Merraoui M, Seki H, Kaneko K. Characterization of nitrogen-alloyed activated carbon fiber. Langmuir, 17, 675 (2001). doi: 10.1021/la000307b.
  6. Kaneko K, Ishii C. Superhigh surface area determination of microporous solids. Colloid Surface, 67, 203 (1992). doi: 10.1016/0166-6622(92)80299-h.
  7. Marsh H, Heintz EA, Rodriguez-Reinoso F. Introduction to Carbon Technologies, University of Alicante, Alicante, Spain, 425-441 (1997).
  8. Otani S, Okuda K, Masuda H. Carbon Fiber, Kindai Henshu Ltd., Tokyo, Japan, 70-110 (1993).
  9. Watanabe F, Korai Y, Mochida I, Nishimura Y. Structure of meltblown mesophase pitch-based carbon fiber. Carbon, 38, 741 (2000). doi: 10.1016/s0008-6223(99)00148-7.
  10. Korai Y, Ishida S, Watanabe F, Yoon SH, Wang YG, Mochida I, Kato I, Nakamura T, Sakai Y, Komatsu M. Preparation of carbon fiber from isotropic pitch containing mesophase spheres. Carbon, 35, 1733 (1997). doi: 10.1016/s0008-6223(97)00128-0.
  11. Formhals A. Process and Apparatus for Preparing Artificial Threads. US patent 1975504 (1934).
  12. Vollrath F, Fairbrother WJ, Williams RJP, Tillinghast EK, Bernstein DT, Gallagher KS, Townley MA. Compounds in the droplets of the orb spider’s viscid spiral. Nature, 345, 526 (1990). doi:10.1038/345526a0.
  13. Deitzel JM, Kleinmeyer J, Harris D, Beck Tan NC. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 42, 261 (2001). doi: 10.1016/s0032-3861(00)00250-0.
  14. Koombhongse S, Liu W, Reneker DH. Flat polymer ribbons and other shapes by electrospinning. J Polym Sci, Part B: Polym Phys, 39, 2598 (2001). doi: 10.1002/polb.10015.
  15. Park SH, Kim C, Choi YO, Yang KS. Preparations of pitch-based CF/ACF webs by electrospinning. Carbon, 41, 2655 (2003). doi:10.1016/s0008-6223(03)00272-0.
  16. Yang KS, Edie DD, Lim DY, Kim YM, Choi YO. Preparation of carbon fiber web from electrostatic spinning of PMDA-ODA poly(amic acid) solution. Carbon, 41, 2039 (2003). doi: 10.1016/s0008-6223(03)00174-x.
  17. Kim C, Yang KS. Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett, 83, 1216 (2003). doi: 10.1063/1.1599963.
  18. Kim C, Yang KS. Preparation and characterization of PAN-based web of carbon nanofibers by electrostatic spinning. Carbon Sci, 3, 210 (2002).
  19. Park SH, Kim C, Yang KS. Preparation of carbonized fiber web from electrospinning of isotropic pitch. Synth Met, 143, 175 (2004). doi: 10.1016/j.synthmet.2003.11.006.
  20. Guillen MD, Iglesias MJ, Dominguez A, Blanco CG. Fourier transform infrared study of coal tar pitches. Fuel, 74, 1595 (1995). doi:10.1016/0016-2361(95)00139-v.
  21. Arshad HW, Lutfullah K, Imtiaz A, Ghosia L. Preparation of mesophase from coal tar pitch[J]. New Carbon Mater, 18, 281 (2003).
  22. Akrami HA, Yardim MF, Akar A, Ekinci E. FT-i.r. characterization of pitches derived from Avgamasya asphaltite and Raman-Dinçer heavy crude. Fuel, 76, 1389 (1997). doi: 10.1016/s0016-2361(97)00100-2.
  23. Lewis IC. Chemistry of pitch carbonization. Fuel, 66, 1527 (1987). doi: 10.1016/0016-2361(87)90012-3.
  24. Boenigk W, Haenel MW, Zander M. Structural features and mesophase formation of coal-tar pitch fractions obtained by preparative size exclusion chromatography. Fuel, 69, 1226 (1990). doi:10.1016/0016-2361(90)90281-t.
  25. Kershaw JR. Spectroscopic Analysis of Coal Liquids, Elsevier, Amsterdam, 247-265 (1989).
  26. Diaz C, Blanco CG. NMR: a powerful tool in the characterization of coal tar pitch. Energy Fuels, 17, 907 (2003). doi: 10.1021/ef020114r.
  27. Mokoena K, Van der Walt TJ, Morgan TJ, Herod AA, Kandiyoti R. Heat treatment of medium-temperature Sasol-Lurgi gasifier coaltar pitch for polymerizing to higher value products. Fuel, 87, 751 (2008). doi: 10.1016/j.fuel.2007.05.006.
  28. Zhang C, Yuan X, Wu L, Han Y, Sheng J. Study on morphology of electrospun poly(vinyl alcohol) mats. Eur Polym J, 41, 423 (2005). doi: 10.1016/j.eurpolymj.2004.10.027.
  29. Ziabicki A. Fundamentals of Fibre Formation: The Science of Fibre Spinning and Drawing, Wiley, London (1976).
  30. Manocha LM, Patel M, Manocha SM, Vix-Guterl C, Ehrburger P. Carbon/carbon composites with heat-treated pitches: I. Effect of treatment in air on the physical characteristics of coal tar pitches and the carbon matrix derived therefrom. Carbon, 39, 663 (2001). doi: 10.1016/s0008-6223(00)00178-0.
  31. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure Appl Chem, 57, 603 (1985). doi: 10.1351/pac198557040603.
  32. Horvath G, Kawazoe K. Method for the calculation of effective pore size distribution in molecular sieve carbon. J Chem Eng Jpn, 16, 470 (1983). doi: 10.1252/jcej.16.470.
  33. de Boer JH, Lippens BC, Linsen BG, Broekhoff JCP, van den Heuvel A, Osinga TJ. Thet-curve of multimolecular N2-adsorption. J Colloid Interface Sci, 21, 405 (1966). doi: 10.1016/0095-8522(66)90006-7.
  34. Bansal RC, Goyal M. Activated Carbon Adsorption, Taylor & Francis, Boca Raton (2005).
  35. Zickler GA, Smarsly B, Gierlinger N, Peterlik H, Paris O. A reconsideration of the relationship between the crystallite size La of carbons determined by X-ray diffraction and Raman spectroscopy. Carbon, 44, 3239 (2006). doi: 10.1016/j.carbon.2006.06.029.
  36. Kinoshita K. Carbon, Electrochemical and Physicochemical Properties, Wiley, New York (1987).
  37. Qu D. Studies of the activated carbons used in double-layer supercapacitors. J Power Sources, 109, 403 (2002). doi: 10.1016/s0378-7753(02)00108-8.
  38. Lee YS, Kim YH, Hong JS, Suh JK, Cho GJ. The adsorption properties of surface modified activated carbon fibers for hydrogen storages. Catal Today, 120, 420 (2007). doi: 10.1016/j.cattod.2006.09.014.

Cited by

  1. Effects of improved porosity and electrical conductivity on pitch-based carbon nanofibers for high-performance gas sensors vol.19, pp.6, 2012, https://doi.org/10.1007/s10934-011-9559-5
  2. Effect of Crystallinity on the Wettability of Petroleum Coke by Coal Tar Pitch vol.30, pp.4, 2016, https://doi.org/10.1021/acs.energyfuels.6b00302
  3. Fabrication and characterization of carbon nanofibers from polyacrylonitrile/pitch blends vol.134, pp.42, 2017, https://doi.org/10.1002/app.45388
  4. Preparation of well-controlled porous carbon nanofiber materials by varying the compatibility of polymer blends vol.63, pp.8, 2013, https://doi.org/10.1002/pi.4645