DOI QR코드

DOI QR Code

Identification of the Gene Responsible for Chicken Muscular Dystrophy

  • Received : 2011.02.23
  • Accepted : 2011.04.27
  • Published : 2011.06.30

Abstract

By a series of positional cloning, we successfully narrowed down the AM candidate region to approximately 1.2 Mbp on GGA2q including 7 functional genes. Subsequently, we identified WWP1 gene as the most likely AM candidate by sequence comparison. The amino acid sequence around the candidate mutation was highly conserved among tetrapods, suggesting that WWP1 is the causative gene of chicken muscular dystrophy. Transfection of mutated WWP1 gene into $C_2C_{12}$ myoblasts disrupted muscle differentiation process. The abnormal muscle differentiation is a characteristic of chicken muscular dystrophy, so we could demonstrate a part of phenotype of the disease. Furthermore, western blotting revealed that accumulation of caveolin-3 protein is limited in damaged muscle of muscular dystrophic chicken, suggesting caveolin-3 may be associated with the pathological change of the disease. We could conclude that WWP1 gene is the responsible one for chicken muscular dystrophy from these results, but the mechanism leading the onset should be clarified in the future. The information will contribute to the study of chicken muscular dystrophy and the corresponding human dystrophies.

Keywords

References

  1. Asmundson VS, Julian LM 1956 Inherited muscle abnormality in the domestic fowl. J Hered 47:248-252. https://doi.org/10.1093/oxfordjournals.jhered.a106655
  2. Asmundson VS, Kratzer FH, Julian LM 1966 Inherited myopathy in the chicken. Ann NY Acad Sci 138:49-60.
  3. Bandman E 1985 Continued expression of neonatal myosin heavy chain in adult dystrophic skeletal muscle. Science 227:780-782. https://doi.org/10.1126/science.3969567
  4. Bandman E, Bennett T 1988 Diversity of fast myosin heavy chain expression during development of gastrocnemius, bicep brachii, and posterior latissimus dorsi muscles in normal and dystrophic chickens. Dev Biol 130:220-231. https://doi.org/10.1016/0012-1606(88)90428-9
  5. Barnard EA, Lyles JM, Pizzey JA 1982 Fiber types in chicken skeletal muscles and their changes in muscular dystrophy. J Physiol 331:333-354. https://doi.org/10.1113/jphysiol.1982.sp014375
  6. Chen C, Matesic LE 2007 The Nedd4-like family of E3 ubiquitin ligases and cancer. Cancer Metastasis Rev 3-4:587- 604.
  7. Costello BR, Shafiq SA 1979 Freeze-fracture study of muscle plasmalemma in normal and dystrophic chickens. Muscle Nerve 2:191-201. https://doi.org/10.1002/mus.880020307
  8. Dalkilic I, Kunkel LM 2003 Muscular dystrophies: genes to pathogenesis. Curr Opin Genet Dev 13:231-238. https://doi.org/10.1016/S0959-437X(03)00048-0
  9. Dowling JJ, Gibbs EM, Feldman EL 2008 Membrane traffic and muscle: Lessons from human disease. Traffic 9:1035- 1043. https://doi.org/10.1111/j.1600-0854.2008.00716.x
  10. Flasza M, Gorman P, Roylance R, Canfield AE, Baron M 2002 Alternative splicing determines the domain structure of WWP1, a Nedd4 family protein. Biochem Biophys Res Commun 290:431-437. https://doi.org/10.1006/bbrc.2001.6206
  11. Galbiati F, Volonte D, Minetti C, Bregman DB, Lisanti MP 2000a Limb-girdle muscular dystrophy (LGMD-1C) mutants of caveolin-3 undergo ubiquitination and proteasomal degradation. J Biol Chem 275:37702-37711. https://doi.org/10.1074/jbc.M006657200
  12. Galbiati F, Volonte D, Chu JB, Li M, Fine SW, Fu M, Bermudez J, Pedemonte M, Weidenheim KM, Pestell RG, Minetti C, Lisanti MP 2000b Transgenic overexpression of caveolin-3 in skeletal muscle fibers induces a Duchennelike muscular dystrophy phenotype. Proc Natl Acad Sci USA 97:9689-9694. https://doi.org/10.1073/pnas.160249097
  13. Hagiwara Y, Sasaoka T, Araishi K, Imamura M, Yorifuji H, Nonaka I, Ozawa E, Kikuchi T 2000 Caveolin-3 deficiency causes muscle degeneration in mice. Hum Mol Genet 9: 3047-3054. https://doi.org/10.1093/hmg/9.20.3047
  14. Kaprielian Z, Bandman E, Fambrough DM 1991 Expression of $Ca^{2+}$-ATPase isoforms in denervated, regenerating, and dystrophic chicken skeletal muscle. Dev Biol 144:199- 211. https://doi.org/10.1016/0012-1606(91)90491-K
  15. Kikuchi T, Ishiura S, Nonaka I, Ebashi S 1981 Genetic heterozygous carriers in hereditary muscular dystrophy of chickens. Tohoku J Agric Res 32:14-26.
  16. Kohl S, Baumann B, Broghammer M, Jagle H, Sieving P, Kellner U, Spegal R, Anastasi M, Zrenner E, Sharpe LT, Wissinger B 2000 Mutations in the CNGB3 gene encoding the beta-subunit of the cone photoreceptor cGMP-gated channel are responsible for achromatopsia (ACHM3) linked to chromosome 8q21. Hum Mol Genet 9:2107-2116. https://doi.org/10.1093/hmg/9.14.2107
  17. Kondo K, Kikuchi T, Mizutani M 1982 Breeding of the chicken as an animal model for muscular dystrophy. Page 19-24 In: Muscular Dystrophy, Tokyo University Press, Tokyo.
  18. Langlands K, Yin X, Anand G, Prochownik EV 1997 Differential interactions of Id proteins with basic-helix-loophelix transcription factors. J Biol Chem 32:19785-19793.
  19. Larsson L, Salviati G 1989 Effects of age on calcium transport activity of sarcoplasmic reticulum in fast- and slowtwitch rat muscle fibres. J Physiol 419:253-264. https://doi.org/10.1113/jphysiol.1989.sp017872
  20. Lee EJ, Yoshizawa K, Mannen H, Kikuchi H, Kikuchi T, Mizutani M, Tsuji S 2002 Localization of the muscular dystrophy AM locus using a chicken linkage map constructed with the Kobe University resource family. Anim Genet 33:42-48. https://doi.org/10.1046/j.1365-2052.2002.00825.x
  21. Lisi MT, Cohn RD 2007 Congenital muscular dystrophies: new aspects of an expanding group of disorders. Biochim Biophys Acta 1772:159-172. https://doi.org/10.1016/j.bbadis.2006.09.006
  22. Matsumoto H, Maruse H, Yoshizawa K, Sasazaki S, Fujiwara A, Kikuchi T, Ichihara N, Mukai F, Mannen H 2007 Pinpointing the candidate region for muscular dystrophy in chickens with an abnormal muscle gene. Anim Sci J 78: 476-483. https://doi.org/10.1111/j.1740-0929.2007.00465.x
  23. Matsumoto H, Maruse H, Inaba Y, Yoshizawa K, Sasazaki S, Fujiwara A, Nishibori M, Nakamura A, Takeda S, Ichihara N, Kikuchi T, Mukai F, Mannen H 2008 The ubiquitin ligase gene (WWP1) is responsible for the chicken muscular dystrophy. FEBS Lett 582:2212-2218. https://doi.org/10.1016/j.febslet.2008.05.013
  24. Matsumoto H, Maruse H, Sasazaki S, Fujiwara A, Takeda S, Ichihara N, Kikuchi T, Mukai F, Mannen H 2009 Expression pattern of WWP1 in muscular dystrophic and normal chickens. J Poult Sci 46:95-99. https://doi.org/10.2141/jpsa.46.95
  25. Matsumoto H, Inba Y, Sasazaki S, Fujiwara A, Ichihara N, Kikuchi T, Mannen H 2010a Mutated WWP1 induces an aberrant expression of myosin heavy chain gene in $C_2C_{12}$ skeletal muscle cells. J Poult Sci 47:115-119. https://doi.org/10.2141/jpsa.009107
  26. Matsumoto H, Takahama M, Kajiyama R, Sasazaki S, Oyama K, Mannen H 2010b Suppression of WWP1 gene via RNAi induced the reduction of proliferation rate of $C_2C_{12}$ myoblasts. J Poult Sci 47:288-293. https://doi.org/10.2141/jpsa.010036
  27. Matsumoto H, Sasazaki S, Fujiwara A, Ichihara N, Kikuchi T, Mannen H 2010c Accumulation of caveolin-3 protein is limited in damaged muscle in chicken muscular dystrophy. Comp Biochem Physiol A Mol Integr Physiol 157:68-72. https://doi.org/10.1016/j.cbpa.2010.04.019
  28. Nonaka I 1987a Muscular dystrophy. pp 42-75 In: Muscular Dystrophy, Japan Medical Journal, Tokyo.
  29. Nonaka I 1987b Animal models for muscular dystrophy. pp 178-185 In: Muscular Dystrophy, Japan Medical Journal, Tokyo.
  30. Partridge T 1991 Animal models of muscular dystrophy: What can they teach us? Neuropathol Appl Neurobiol 17: 353-363. https://doi.org/10.1111/j.1365-2990.1991.tb00735.x
  31. Pirozzi G, McConnell SJ, Uveges AJ, Carter JM, Sparksi AB, Kayi BK, Fowlkes DM 1997 Identification of novel human WW domain-containing proteins by cloning of ligand targets. J Biol Chem 272:14611-14616. https://doi.org/10.1074/jbc.272.23.14611
  32. Saito F, Blank M, Schroder J, Manya H, Shimizu T, Campbell KP, Endo T, Mizutani M, Kroger S, Matsumura K 2005 Aberrant glycosylation of $\alpha$-dystroglycan causes defective binding of laminin in the muscle of chicken muscular dystrophy. FEBS Lett 579:2359-2363. https://doi.org/10.1016/j.febslet.2005.03.033
  33. Scheffner M, Staub O 2007 HECT E3s and human disease. BMC Biochem 8 Suppl 1:S6. https://doi.org/10.1186/1471-2091-8-S1-S6
  34. Schmid M, Nanda I, Guttenbach M, Steinlein C, Hoehn M, Schartl M, Haaf T, Weigend S, Fries R, Buerstedde JM, Wimmers K, Burt DW, Smith J, A'Hara S, Law A, Griffin DK, Bumstead N, Kaufman J, Thomson PA, Burke T, Groenen MA, Crooijmans RP, Vignal A, Fillon V, Morisson M, Pitel F, Tixier-Boichard M, Ladjali-Mohammedi K, Hillel J, Maki-Tanila A, Cheng HH, Delany ME, Burnside J, Mizuno S 2000 First report on chicken genes and chromosomes. Cytogenet Cell Genet 90:169-218. https://doi.org/10.1159/000056772
  35. Silberstein L, Webster SG, Travis M, Blau HM 1986 Developmental progression of myosin gene expression in cultured muscle cells. Cell 46:1075-1081. https://doi.org/10.1016/0092-8674(86)90707-5
  36. Song KS, Scherer PE, Tang Z, Okamoto T, Li S, Chafel M, Chu C, Kohtz DS, Lisanti MP 1996 Expression of caveolin-3 in skeletal, cardiac, and smooth muscle cells. Caveolin-3 is a component of the sarcolemma and co-fractionates with dystrophin and dystrophin-associated glycoproteins. J Biol Chem 271:15160-15165. https://doi.org/10.1074/jbc.271.25.15160
  37. Tidyman WE, Moore LA, Bandman E 1997 Expression of fast myosin heavy chain transcripts in developing and dystrophic chicken skeletal muscle. Dev Dyn 208:491-504. https://doi.org/10.1002/(SICI)1097-0177(199704)208:4<491::AID-AJA5>3.0.CO;2-D
  38. Wagner WD, Peterson RA 1970 Muscular dystrophy syndrome in the Cornish chicken. Am J Vet Res 31:331-338.
  39. Yoshizawa K, Inaba K, Mannen H, Kikuchi T, Mizutani M, Tsuji S 2004 Fine mapping of the muscular dystrophy (AM) gene on chicken chromosome 2q. Anim Genet 35: 397-400. https://doi.org/10.1111/j.1365-2052.2004.01171.x
  40. Yoshida Y, Chiba T, Tokunaga F, Kawasaki H, Iwai K, Suzuki T, Ito Y, Matsuoka K, Yoshida M, Tanaka K, Tai T 2002 E3 ubiquitin ligase that recognizes sugar chains. Nature 418:438-442. https://doi.org/10.1038/nature00890
  41. Yoshida Y, Tokunaga F, Chiba T, Iwai K, Tanaka K, Tai T 2003 Fbs2 is a new member of the E3 ubiquitin ligase family that recognizes sugar chains. J Biol Chem 278: 43877-43884. https://doi.org/10.1074/jbc.M304157200

Cited by

  1. Characterization of Insertional Variation of Porcine Endogenous Retroviruses in Six Different Pig Breeds vol.25, pp.10, 2012, https://doi.org/10.5713/ajas.2012.12131