DOI QR코드

DOI QR Code

Structures and Formation Energies of LixC6 (x=1-3) and its Homologues for Lithium Rechargeable Batteries

  • 투고 : 2011.02.26
  • 심사 : 2011.04.21
  • 발행 : 2011.06.20

초록

Using first principles density functional theory the formation energies of various binary compounds of lithium graphite and its homologues were calculated. Lithium and graphite react to form $Li_1C_6$ (+141 mV) but not form $LiC_4$ (-143 mV), $LiC_3$ (-247 mV) and $LiC_2$ (-529 mV) because they are less stable than lithium metal itself. Properties of structure and reaction potentials of $C_5B$, $C_5N$ and $B_3N_3$ materials as iso-structural graphite were studied. Boron and nitrogen substituted graphite and boron-nitrogen material as a iso-electronic structured graphitic material have longer graphene layer spacing than that of graphite. The layer spacing of $Li_xC_6$, $Li_xC_5B$, $Li_xC_5N$ materials increased until to x=1, and then decreased until to x=2 and 3. Nevertheless $Li_xB_3N_3$ has opposite tendency of layer spacing variation. Among various lithium compositions of $Li_xC_5B$, $Li_xC_5N$ and $Li_xB_3N_3$, reaction potentials of $Li_xC_5B$ (x=1-3) and $Li_xC_5$ (x=1) from total energy analyses have positive values against lithium deposition.

키워드

참고문헌

  1. Nazri, G.-A., Pistoia, G., Eds.; Lithium Batteries; Kluwer Academic Publishers; Boston: ISBN 1-4020-7628-2, 2004.
  2. Yoshio, M.; Brodd, R. J.; Kozawa, A. Lithium-Ion Batteries; Springer Science and Business Media, ISBN 978-0-387-34444-7, 2009.
  3. Fauster, J. E.; Himpsel, F. J.; Fischer, J. E.; Plummer, E. W. Physical Review Letters 1983, 51, 430. https://doi.org/10.1103/PhysRevLett.51.430
  4. Yazami, R.; Reynier, Y. J. Power Sources 2006, 153, 312. https://doi.org/10.1016/j.jpowsour.2005.05.087
  5. Titantah, J. T.; Lamoen, D.; Schowalter, M.; Rosenauer, A. Carbon 2009, 47, 2501. https://doi.org/10.1016/j.carbon.2009.05.002
  6. Suzuki, S.; Hasegawa, T.; Mukai, S. R.; Tamon, H. Carbon 2003, 41, 1933. https://doi.org/10.1016/S0008-6223(03)00178-7
  7. Li, G.; Li, X.; Wang, C.; Ma, G. THEOCHEM 2009, 910, 55.
  8. Yamamoto, M.; Imamura, H. TANSO 2004, 212, 81.
  9. Imai, Y.; Watanabe, A. J. Alloys and Compounds 2007, 439, 258. https://doi.org/10.1016/j.jallcom.2006.08.061
  10. Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558(R) https://doi.org/10.1103/PhysRevB.47.558
  11. Kresse, G.; Hafner, J. Phys. Rev. B 1994, 49, 14251. https://doi.org/10.1103/PhysRevB.49.14251
  12. Blochl, P. E. Phys. Rev. B 1994, 750, 17953.
  13. Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  14. Zhou, F.; Marianetti, C. A.; Cococcioni, M.; Morgan, D.; Ceder, G. Phys. Rev. B 2004, 69, 201101(R). https://doi.org/10.1103/PhysRevB.69.201101
  15. Van der Ven, A. Ph.D. Thesis, Massachusetts Institute of Technology, 2000.
  16. Zhou, F.; Cococcioni, M.; Marianetti, C. A.; Morgan, D.; Ceder, G. Phys. Rev. B 2004, 70, 235121. https://doi.org/10.1103/PhysRevB.70.235121
  17. Zhou, F.; Cococcioni, M.; Kang, K.; Ceder, G. Electrochem. Commun. 2004, 6(11), 1144. https://doi.org/10.1016/j.elecom.2004.09.007
  18. Rabii, S.; Guerard, D. J. Physics and Chemistry of Solids 2008, 69, 1165. https://doi.org/10.1016/j.jpcs.2007.10.023
  19. Yamamoto, M.; Imamura, H. TANSO 2004, 212, 81.
  20. Imai, Y.; Watanabe, A. J. Alloys and Compounds 2007, 439, 258. https://doi.org/10.1016/j.jallcom.2006.08.061
  21. Balbuena, P. B., Wang, Y., Eds; Lithium-Ion Batteries-Solid-Electrolyte Interphase; Imperial College Press: ISBN 1-86094-362-4, 2004.
  22. Tossici, R.; Janot, R.; Nobili, F.; Gerard, D.; Marassi, R. Electrochim. Acta 2003, 48, 1419. https://doi.org/10.1016/S0013-4686(03)00019-7
  23. Guerard, D.; Janot, R. J. Phys. Chem. Solids 2004, 65, 147. https://doi.org/10.1016/j.jpcs.2003.09.027
  24. Hanot, R.; Conard, J.; Guerard, D. Carbon 2001, 39, 929.
  25. Nalimova, V. A.; Guerard, D.; Lelaurain, M.; Fateev, O. V. Carbon 1995, 33, 177. https://doi.org/10.1016/0008-6223(94)00123-H

피인용 문헌

  1. Theoretical Study of Li Migration in Lithium–Graphite Intercalation Compounds with Dispersion-Corrected DFT Methods vol.118, pp.5, 2014, https://doi.org/10.1021/jp408945j
  2. Diolefins with an ether/thioether functionality as ligands in the coordination sphere of Ni and Rh vol.44, pp.46, 2015, https://doi.org/10.1039/C5DT03279B
  3. State of Charge and State of Health Estimation Using Electrochemical Acoustic Time of Flight Analysis vol.164, pp.12, 2017, https://doi.org/10.1149/2.1411712jes
  4. The Li-C phase equilibria vol.104, pp.11, 2011, https://doi.org/10.3139/146.110960
  5. Predicting High-Temperature Decomposition of Lithiated Graphite: Part I. Review of Phenomena and a Comprehensive Model vol.165, pp.16, 2011, https://doi.org/10.1149/2.0541816jes
  6. Zinc-assisted mechanochemical coating of a reduced graphene oxide thin layer on silicon microparticles to achieve efficient lithium-ion battery anodes vol.3, pp.5, 2011, https://doi.org/10.1039/c9se00048h
  7. Study of a Li-Ion Cell Kinetics in Five Regions to Predict Li Plating Using a Pseudo Two-Dimensional Model vol.11, pp.22, 2011, https://doi.org/10.3390/su11226392
  8. [n]Phenacenes: Promising Organic Anodes for Potassium-Ion Batteries vol.124, pp.13, 2011, https://doi.org/10.1021/acs.jpcc.9b10930
  9. Strategy to Enhance the Cycling Stability of the Metallic Lithium Anode in Li-Metal Batteries vol.21, pp.4, 2011, https://doi.org/10.1021/acs.nanolett.1c00140