DOI QR코드

DOI QR Code

Characteristics of a Metal-loaded SnO2/WO3 Thick Film Gas Sensor for Detecting Acetaldehyde Gas

  • Jun, Jae-Mok (Department of Chemistry, Keimyung University) ;
  • Park, Young-Ho (Department of Pharmaceutical Engineering, International University of Korea) ;
  • Lee, Chang-Seop (Department of Chemistry, Keimyung University)
  • Received : 2011.03.16
  • Accepted : 2011.04.06
  • Published : 2011.06.20

Abstract

This study investigates the sensitivity of a gas sensor to volatile organic compounds (VOCs) at various operating temperatures and catalysts. Nano-sized powdered $WO_3$ prepared by sol-gel and chemical precipitation methods was mixed with various metal oxides. Next, transition metals (Pt, Ru, Pd, and In) were doped on the surface of the mixture. Metal-$WO_3$ thick films were prepared using the screen-printing method. The physical and chemical properties of the films were studied by SEM/EDS, XRD, and BET techniques. The measured sensitivity to VOCs is defined as the ratio ($R_a/R_g$) of resistance ($R_{air}$) of $WO_3$ film in the air to resistance ($R_{gas}$) of $WO_3$ film in a VOCs test gas. The sensitivity and selectivity of the films were tested with various VOCs such as acetaldehyde, formaldehyde, methyl alcohol, and BTEX. The thick $WO_3$ film containing 1 wt % of Ru and 5 wt % of $SnO_2$ showed the best sensitivity and selectivity to acetaldehyde gas at an operating temperature of 300 $^{\circ}C$.

Keywords

References

  1. Noordally, E.; Richmond, J.; Tabir, S. F. Catalyst Today 1993, 17, 359. https://doi.org/10.1016/0920-5861(93)80039-4
  2. Hodgson, A. T.; Faulkner, D.; Sullivan, D. P.; Dibartolomeo, M. L.; Russel, D. L.; Fisk, W. J. Atmospheric Environment 2003, 37, 5517. https://doi.org/10.1016/j.atmosenv.2003.09.028
  3. Seiyama, T.; Kata, A.; Fukiishi, K.; Nagatini, M. Anal. Chem. 1962, 34, 1502. https://doi.org/10.1021/ac60191a001
  4. Taguchi, N. Jap. Patent 45-382, 1962.
  5. Faglia, G.; Nelli, P.; Sberveglieri, G. Sensor and Actuators B 1994, 18-19, 497.
  6. Saji, K. et al. Proc. Int. Meet. on Chemical Sensors; Fukuoka: Japan, 1983; p 171.
  7. Levy, M. et al. J. Physique. Coll. 1991, 6(41), 329.
  8. Wang, Y.; Wang, S.; Zhao, Y.; Zhu, B.; Kong, F.; Wang, D.; Wu, S.; Huang, W.; Zhang, S. Sensors and Actuators B 2007, 125, 79. https://doi.org/10.1016/j.snb.2007.01.037
  9. Zhan, Z.; Lu, J.; Song, W.; Jiang, D.; Xu, J. Materials Research Bulletin 2007, 42, 228. https://doi.org/10.1016/j.materresbull.2006.06.006
  10. Shaver, P. Appl. Phys. Lett. 1967, 11, 255. https://doi.org/10.1063/1.1755123
  11. Nishio, K.; Sei, T.; Tsuchiya, T. J. Ceram. Soc. Jpn. 1999, 107, 199. https://doi.org/10.2109/jcersj.107.199
  12. Klejnot, O. J. Inorg. Chem. 1965, 4, 1668. https://doi.org/10.1021/ic50033a034
  13. Hocker, H.; Jones, F. R. Macromol. Chem. 1972, 161, 251. https://doi.org/10.1002/macp.1972.021610118
  14. Min, B. K.; Oh, S. D. Kor. J. Ceram. 1999, 5(2), 125.
  15. Lim, C. H.; Oh, S. J. Sensors and Actuators B 1996, 30, 223. https://doi.org/10.1016/0925-4005(96)80053-0
  16. Yoo, D. J.; Tamaki, J.; Miura, N.; Yamajoe, N.; Park, S. J. Korean Journal of Materials Research 1996, 6(7), 716.
  17. Kawahara, A.; Katsuki, H.; Egashira, M. Sensors and Actuators B 1998, 49, 273. https://doi.org/10.1016/S0925-4005(98)00153-1
  18. Khadayate, R. S.; Sali, J. V.; Patil, P. P. Talanta 2007, 72, 1077. https://doi.org/10.1016/j.talanta.2006.12.043
  19. Dean, J. A. Lange's Handbook of Chemistry, 13th ed.; McGraw Hill: New York, U.S.A. 1985; p 10.
  20. Xu, C.; Kurokawa, J.; Miura, N.; Yamazoe, N. J. Mater. Sci. 1992, 27, 963. https://doi.org/10.1007/BF01197649
  21. Meng, D.; Yamajaki, Y.; Shen Y.; Liu Z.; Kikuta T. Appl. Surf. Sci. 2009, 256, 1050. https://doi.org/10.1016/j.apsusc.2009.05.075
  22. Matsuyama, N.; Okazaki, S.; Nakagawa, H.; Fukuda, K. Thin Solid Films 2009, 517, 4650. https://doi.org/10.1016/j.tsf.2009.01.126
  23. Tutov, E. A. Semiconductors 2008, 42, 1561. https://doi.org/10.1134/S106378260813023X
  24. Khatko, V.; Vallejos, S.; Calderer, J.; Gracia, I.; Cane, C.; Llobet, E.; Correig, X. Sens. Actuators B: Chem. 2009, 140, 356. https://doi.org/10.1016/j.snb.2009.05.020
  25. Srivastava, V.; Jain, K. Sens. Actuators B: Chem. 2008, 133, 46. https://doi.org/10.1016/j.snb.2008.01.066
  26. Wu, R.-J.; Chang, W.-C.; Tsai, K.-M.; Wu, J.-G. Sens. Actuators B: Chem. 2009, 138, 35. https://doi.org/10.1016/j.snb.2009.02.014
  27. Jakubik, W. P. Thin Solid Films 2009, 517, 6188. https://doi.org/10.1016/j.tsf.2009.04.008
  28. Solntsev, V. S.; Gorvanyuk, T. I.; Litovchenko, V. G.; Evtukh, A. A. Thin Solid Films 2009, 517, 6202. https://doi.org/10.1016/j.tsf.2009.04.012

Cited by

  1. Highly selective acetaldehyde sensor using sol–gel dip coated nano crystalline TiO2 thin film vol.26, pp.7, 2015, https://doi.org/10.1007/s10854-015-3041-0
  2. Development of Nano-$$\hbox {WO}_{3}$$WO3 Doped with NiO for Wireless Gas Sensors pp.2191-4281, 2019, https://doi.org/10.1007/s13369-018-3608-1
  3. Simulation of SnO2/WO3 nanofilms for alcohol of gas sensor based on metal dioxides: MC and LD studies vol.3, pp.1, 2011, https://doi.org/10.1186/2193-8865-3-1
  4. Facile Synthesis of Hybridized Mesoporous Au@TiO2/SnO2 as Efficient Photocatalyst and Selective VOC Sensor vol.1, pp.12, 2011, https://doi.org/10.1002/slct.201600634
  5. Hierarchical CuO nanostructured materials for acetaldehyde sensor application vol.251, pp.None, 2011, https://doi.org/10.1016/j.mee.2021.111662