DOI QR코드

DOI QR Code

Experimental and Theoretical Studies on the Tautomerism in 2-Aminopyridines and 2(1H)-Pyridinones: Synthesis of 2-Amino-4-aryl-3-cyano-6-(3,4-dimethoxyphenyl)pyridines and 4-Aryl-3-cyano-6-(3,4-dimethoxyphenyl)-2(1H)-pyridinones

  • Davoodnia, Abolghasem (Department of Chemistry, Mashhad Branch, Islamic Azad University) ;
  • Attar, Paria (Department of Chemistry, Mashhad Branch, Islamic Azad University) ;
  • Morsali, Ali (Department of Chemistry, Mashhad Branch, Islamic Azad University) ;
  • Eshghi, Hossein (Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad) ;
  • Tavakoli-Hoseini, Niloofar (Department of Chemistry, Mashhad Branch, Islamic Azad University) ;
  • Khadem, Shahriar (Department of Chemistry, University of Ottawa)
  • Received : 2011.03.24
  • Accepted : 2011.04.07
  • Published : 2011.06.20

Abstract

Under solvent-free conditions and in one-pot, a series of 2-amino-4-aryl-3-cyano-6-(3,4-dimethoxyphenyl)-pyridines and 4-aryl-3-cyano-6-(3,4-dimethoxyphenyl)-2(1H)-pyridinones were prepared using 3,4-dimethoxyacetophenone, an aldehyde, malononitrile (or ethyl cyanoacetate), and ammonium acetate in the presence of 3-methyl-1-(4-sulfonylbutyl)imidazolium hydrogen sulfate $[HO_3S(CH_2)_4MIM][HSO_4]$ (a Br${\o}$nsted acidic ionic liquid) as the catalyst in very short reaction time. The preference for the formation of more stable tautomers was consistence with the theoretical calculation using the Gaussian 03 program at the B3LYP hybrid density functional level.

Keywords

References

  1. Konda, S. G.; Khedkar, V. T.; Dawane, B. S. J. Chem. Pharm. Res. 2010, 2, 187.
  2. Mungra, D. C.; Patel, M. P.; Patel, R. G. Arkivoc 2009, 64.
  3. Vyas, D. H.; Tala, S. D.; Akbari, J. D.; Dhaduk, M. F.; Joshi, K. A.; Joshi, H. S. Ind. J. Chem. B-Org. Chem. Incl. Med. Chem. 2009, 48, 833.
  4. Gholap, A. R.; Toti, K. S.; Shirazi, F.; Kumari, R.; Bhat, M. K.; Deshpande, M. V.; Srinivasan, K. V. Bioorg. Med. Chem. 2007, 15, 6705. https://doi.org/10.1016/j.bmc.2007.08.009
  5. Bekhit, A. A.; Baraka, A. M. Eur. J. Med. Chem. 2005, 40, 1405. https://doi.org/10.1016/j.ejmech.2005.06.005
  6. Murata, T.; Shimada, M.; Sakakibara, S.; Yoshino, T.; Kadono, H.; Masuda, T.; Shimazaki, M.; Shintani, T.; Fuchikami, K.; Sakai, K.; Inbe, H.; Takeshita, K.; Niki, T.; Umeda, M.; Bacon, K. B.; Ziegelbauer, K. B.; Lowinger, T. B. Bioorg. Med. Chem. Let. 2003, 13, 913. https://doi.org/10.1016/S0960-894X(02)01046-6
  7. Abadi, A. H.; Al-Khamees, H. A. Arch. Pharm. 1998, 331, 319. https://doi.org/10.1002/(SICI)1521-4184(199810)331:10<319::AID-ARDP319>3.3.CO;2-M
  8. Thompson, P. E.; Manganiello, V.; Degerman, E. Cur. Top. Med. Chem. 2007, 7, 421. https://doi.org/10.2174/156802607779941224
  9. Abadi, A.; Al-Deeb, O.; Al-Afify, A.; El-Kashef, H. Farmaco 1999, 54, 195. https://doi.org/10.1016/S0014-827X(99)00004-X
  10. Abadi, A. H.; Abouel-Ella, D. A.; Lehmann, J.; Tinsley, H. N.; Gary, B. D.; Piazza, G. A.; Abdel-Fattah, M. A. O. Eur. J. Med. Chem. 2010, 45, 90. https://doi.org/10.1016/j.ejmech.2009.09.029
  11. Kambe, S.; Saito, K.; Sakurai, A.; Midorikawa, H. Synthesis 1980, 366.
  12. Paul, S.; Gupta, R.; Loupy, A. J. Chem. Res. S 1998, 330.
  13. Shaker, R. M.; AbdelLatif, F. F. J. Chem. Res. S 1997, 294.
  14. Shi, F.; Tu, S. J.; Fang, F.; Li, T. J. Arkivoc 2005, 137.
  15. Litvinov, V. P.; Yakunin, Y. Y.; Dyachenko, V. D. Chem. Hetero. Comp. 2001, 37, 37. https://doi.org/10.1023/A:1017536700235
  16. Heravi, M. M.; Beheshtia, Y. S.; Khorshidi, M.; Baghernejad, B.; Bamoharam, F. F. Chin. J. Chem. 2009, 27, 569. https://doi.org/10.1002/cjoc.200990093
  17. Alberola, A.; Calvo, L. A.; Ortega, A. G.; Ruiz, M. C. S.; Yustos, P.; Granda, S. G.; Garcia-Rodriguez, E. J. Org. Chem. 1999, 64, 9493. https://doi.org/10.1021/jo991121o
  18. Litvinov, V. P. Rus. Chem. Rev. 2006, 75, 577. https://doi.org/10.1070/RC2006v075n07ABEH003619
  19. Davoodnia, A.; Bakavoli, M.; Barakouhi, Gh.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2007, 18, 1483. https://doi.org/10.1016/j.cclet.2007.10.013
  20. Davoodnia, A.; Roshani, M.; Malaeke, S. H.; Bakavoli, M. Chin. Chem. Lett. 2008, 19, 525. https://doi.org/10.1016/j.cclet.2008.01.037
  21. Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli- Hoseini, N. Monatsh. Chem. 2009, 140, 1499. https://doi.org/10.1007/s00706-009-0193-8
  22. Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli- Hoseini, N. Monatsh. Chem. 2010, 141, 867. https://doi.org/10.1007/s00706-010-0329-x
  23. Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli- Hoseini, N. Chin. J. Chem. 2010, 28, 429. https://doi.org/10.1002/cjoc.201090091
  24. Davoodnia, A.; Heravi, M. M.; Safavi-Rad, Z.; Tavakoli-Hoseini, N. Synth. Commun. 2010, 40, 2588. https://doi.org/10.1080/00397910903289271
  25. Tavakoli-Hoseini, N.; Davoodnia, A. Asian J. Chem. 2010, 22, 7197.
  26. Davoodnia, A.; Allameh, S.; Fakhari, A. R.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2010, 21, 550. https://doi.org/10.1016/j.cclet.2010.01.032
  27. Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli- Hoseini, N. Chin. Chem. Lett. 2010, 21, 1. https://doi.org/10.1016/j.cclet.2009.09.002
  28. Wang, W. J.; Shao, L. L.; Cheng, W. P.; Yang, J. G.; He, M. Y. Catal. Commun. 2008, 9, 337. https://doi.org/10.1016/j.catcom.2007.07.006

Cited by

  1. ChemInform Abstract: Experimental and Theoretical Studies on the Tautomerism in 2-Aminopyridines and 2(1H)-Pyridinones: Synthesis of 2-Amino-4-aryl-3-cyano-6-(3,4-dimethoxyphenyl)pyridines and 4-Aryl-3-cyano-6-(3,4-dimethoxyphenyl)-2(1H)-pyridinones. vol.42, pp.43, 2011, https://doi.org/10.1002/chin.201143139
  2. Tautomerization, molecular structure, transition state structure, and vibrational spectra of 2-aminopyridines: a combined computational and experimental study vol.4, pp.1, 2015, https://doi.org/10.1186/s40064-015-1363-2
  3. One-pot synthesis of methyl piperazinyl–quinolinyl nicotinonitrile derivatives under microwave conditions and molecular docking studies with DNA vol.15, pp.11, 2018, https://doi.org/10.1007/s13738-018-1446-4
  4. Synthesis and antimicrobial activity of 4-trifluoromethylpyridine nucleosides vol.23, pp.3, 2011, https://doi.org/10.1515/hc-2017-0019
  5. Synthesis and antimicrobial activity of 4-trifluoromethylpyridine nucleosides vol.23, pp.3, 2011, https://doi.org/10.1515/hc-2017-0019
  6. Copper Zirconium Phosphate as an Efficient Catalyst for Multi-component Reactions in Solvent-Free Conditions vol.42, pp.1, 2011, https://doi.org/10.1007/s40995-018-0495-y
  7. Synthesis and Biological Evaluation of Glycosides and Acyclic Nucleosides Derived 2‐Oxonicotinonitriles vol.56, pp.7, 2011, https://doi.org/10.1002/jhet.3563
  8. Synthesis and Biological Evaluation of Glycosides and Acyclic Nucleosides Derived 2‐Oxonicotinonitriles vol.56, pp.7, 2011, https://doi.org/10.1002/jhet.3563
  9. Glycoside- and acyclic nucleoside-based 6-cyclohexyl-4-aryl-2-oxonicotinonitrile: synthesis and antimicrobial evaluation vol.16, pp.9, 2011, https://doi.org/10.1007/s13738-019-01662-x
  10. Glycoside- and acyclic nucleoside-based 6-cyclohexyl-4-aryl-2-oxonicotinonitrile: synthesis and antimicrobial evaluation vol.16, pp.9, 2011, https://doi.org/10.1007/s13738-019-01662-x