References
- Konda, S. G.; Khedkar, V. T.; Dawane, B. S. J. Chem. Pharm. Res. 2010, 2, 187.
- Mungra, D. C.; Patel, M. P.; Patel, R. G. Arkivoc 2009, 64.
- Vyas, D. H.; Tala, S. D.; Akbari, J. D.; Dhaduk, M. F.; Joshi, K. A.; Joshi, H. S. Ind. J. Chem. B-Org. Chem. Incl. Med. Chem. 2009, 48, 833.
- Gholap, A. R.; Toti, K. S.; Shirazi, F.; Kumari, R.; Bhat, M. K.; Deshpande, M. V.; Srinivasan, K. V. Bioorg. Med. Chem. 2007, 15, 6705. https://doi.org/10.1016/j.bmc.2007.08.009
- Bekhit, A. A.; Baraka, A. M. Eur. J. Med. Chem. 2005, 40, 1405. https://doi.org/10.1016/j.ejmech.2005.06.005
- Murata, T.; Shimada, M.; Sakakibara, S.; Yoshino, T.; Kadono, H.; Masuda, T.; Shimazaki, M.; Shintani, T.; Fuchikami, K.; Sakai, K.; Inbe, H.; Takeshita, K.; Niki, T.; Umeda, M.; Bacon, K. B.; Ziegelbauer, K. B.; Lowinger, T. B. Bioorg. Med. Chem. Let. 2003, 13, 913. https://doi.org/10.1016/S0960-894X(02)01046-6
- Abadi, A. H.; Al-Khamees, H. A. Arch. Pharm. 1998, 331, 319. https://doi.org/10.1002/(SICI)1521-4184(199810)331:10<319::AID-ARDP319>3.3.CO;2-M
- Thompson, P. E.; Manganiello, V.; Degerman, E. Cur. Top. Med. Chem. 2007, 7, 421. https://doi.org/10.2174/156802607779941224
- Abadi, A.; Al-Deeb, O.; Al-Afify, A.; El-Kashef, H. Farmaco 1999, 54, 195. https://doi.org/10.1016/S0014-827X(99)00004-X
- Abadi, A. H.; Abouel-Ella, D. A.; Lehmann, J.; Tinsley, H. N.; Gary, B. D.; Piazza, G. A.; Abdel-Fattah, M. A. O. Eur. J. Med. Chem. 2010, 45, 90. https://doi.org/10.1016/j.ejmech.2009.09.029
- Kambe, S.; Saito, K.; Sakurai, A.; Midorikawa, H. Synthesis 1980, 366.
- Paul, S.; Gupta, R.; Loupy, A. J. Chem. Res. S 1998, 330.
- Shaker, R. M.; AbdelLatif, F. F. J. Chem. Res. S 1997, 294.
- Shi, F.; Tu, S. J.; Fang, F.; Li, T. J. Arkivoc 2005, 137.
- Litvinov, V. P.; Yakunin, Y. Y.; Dyachenko, V. D. Chem. Hetero. Comp. 2001, 37, 37. https://doi.org/10.1023/A:1017536700235
- Heravi, M. M.; Beheshtia, Y. S.; Khorshidi, M.; Baghernejad, B.; Bamoharam, F. F. Chin. J. Chem. 2009, 27, 569. https://doi.org/10.1002/cjoc.200990093
- Alberola, A.; Calvo, L. A.; Ortega, A. G.; Ruiz, M. C. S.; Yustos, P.; Granda, S. G.; Garcia-Rodriguez, E. J. Org. Chem. 1999, 64, 9493. https://doi.org/10.1021/jo991121o
- Litvinov, V. P. Rus. Chem. Rev. 2006, 75, 577. https://doi.org/10.1070/RC2006v075n07ABEH003619
- Davoodnia, A.; Bakavoli, M.; Barakouhi, Gh.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2007, 18, 1483. https://doi.org/10.1016/j.cclet.2007.10.013
- Davoodnia, A.; Roshani, M.; Malaeke, S. H.; Bakavoli, M. Chin. Chem. Lett. 2008, 19, 525. https://doi.org/10.1016/j.cclet.2008.01.037
- Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli- Hoseini, N. Monatsh. Chem. 2009, 140, 1499. https://doi.org/10.1007/s00706-009-0193-8
- Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli- Hoseini, N. Monatsh. Chem. 2010, 141, 867. https://doi.org/10.1007/s00706-010-0329-x
- Davoodnia, A.; Heravi, M. M.; Rezaei-Daghigh, L.; Tavakoli- Hoseini, N. Chin. J. Chem. 2010, 28, 429. https://doi.org/10.1002/cjoc.201090091
- Davoodnia, A.; Heravi, M. M.; Safavi-Rad, Z.; Tavakoli-Hoseini, N. Synth. Commun. 2010, 40, 2588. https://doi.org/10.1080/00397910903289271
- Tavakoli-Hoseini, N.; Davoodnia, A. Asian J. Chem. 2010, 22, 7197.
- Davoodnia, A.; Allameh, S.; Fakhari, A. R.; Tavakoli-Hoseini, N. Chin. Chem. Lett. 2010, 21, 550. https://doi.org/10.1016/j.cclet.2010.01.032
- Davoodnia, A.; Bakavoli, M.; Moloudi, R.; Khashi, M.; Tavakoli- Hoseini, N. Chin. Chem. Lett. 2010, 21, 1. https://doi.org/10.1016/j.cclet.2009.09.002
- Wang, W. J.; Shao, L. L.; Cheng, W. P.; Yang, J. G.; He, M. Y. Catal. Commun. 2008, 9, 337. https://doi.org/10.1016/j.catcom.2007.07.006
Cited by
- ChemInform Abstract: Experimental and Theoretical Studies on the Tautomerism in 2-Aminopyridines and 2(1H)-Pyridinones: Synthesis of 2-Amino-4-aryl-3-cyano-6-(3,4-dimethoxyphenyl)pyridines and 4-Aryl-3-cyano-6-(3,4-dimethoxyphenyl)-2(1H)-pyridinones. vol.42, pp.43, 2011, https://doi.org/10.1002/chin.201143139
- Tautomerization, molecular structure, transition state structure, and vibrational spectra of 2-aminopyridines: a combined computational and experimental study vol.4, pp.1, 2015, https://doi.org/10.1186/s40064-015-1363-2
- One-pot synthesis of methyl piperazinyl–quinolinyl nicotinonitrile derivatives under microwave conditions and molecular docking studies with DNA vol.15, pp.11, 2018, https://doi.org/10.1007/s13738-018-1446-4
- Synthesis and antimicrobial activity of 4-trifluoromethylpyridine nucleosides vol.23, pp.3, 2011, https://doi.org/10.1515/hc-2017-0019
- Synthesis and antimicrobial activity of 4-trifluoromethylpyridine nucleosides vol.23, pp.3, 2011, https://doi.org/10.1515/hc-2017-0019
- Copper Zirconium Phosphate as an Efficient Catalyst for Multi-component Reactions in Solvent-Free Conditions vol.42, pp.1, 2011, https://doi.org/10.1007/s40995-018-0495-y
- Synthesis and Biological Evaluation of Glycosides and Acyclic Nucleosides Derived 2‐Oxonicotinonitriles vol.56, pp.7, 2011, https://doi.org/10.1002/jhet.3563
- Synthesis and Biological Evaluation of Glycosides and Acyclic Nucleosides Derived 2‐Oxonicotinonitriles vol.56, pp.7, 2011, https://doi.org/10.1002/jhet.3563
- Glycoside- and acyclic nucleoside-based 6-cyclohexyl-4-aryl-2-oxonicotinonitrile: synthesis and antimicrobial evaluation vol.16, pp.9, 2011, https://doi.org/10.1007/s13738-019-01662-x
- Glycoside- and acyclic nucleoside-based 6-cyclohexyl-4-aryl-2-oxonicotinonitrile: synthesis and antimicrobial evaluation vol.16, pp.9, 2011, https://doi.org/10.1007/s13738-019-01662-x