DOI QR코드

DOI QR Code

Hydrogenation of Phenylacetylene to Styrene on Pre-CxHy- and C-Covered Cu(111) Single Crystal Catalysts

  • Sohn, Young-Ku (Department of Chemistry, Yeungnam University) ;
  • Wei, Wei (Center for Materials Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin) ;
  • White, John M. (Center for Materials Chemistry, Department of Chemistry and Biochemistry, The University of Texas at Austin)
  • Received : 2010.11.22
  • Accepted : 2011.03.20
  • Published : 2011.05.20

Abstract

Thermal hydrogenation of phenylacetylene (PA, $C_8H_6$) to styrene ($C_8H_8$) on pre-$C_xH_y$- and C-covered Cu(111) single crystal substrates has been studied using temperature-programmed desorption (TPD) mass spectrometry. Chemisorbed PA with an acetylene group has been proved to be associated with hydrogen of pre-adsorbed $C_xH_y$ to form styrene (104 amu) on Cu surface. For the parent (PA) mass (102 amu) TPD profile, the TPD peaks at 360 K and 410 K are assigned to chemisorbed vertically aligned PA and flat-lying cross-bridged PA, respectively (J. Phys. Chem. C 2007, 111, 5101). The relative $I_{360K}/I_{410K}$ TPD ratio dramatically increases with increasing pre-adsorbed $C_xH_y$ before dosing PA, while the ratio does not increase for pre-C-covered surface. For PA on pre-$C_xH_y$-covered Cu(111) surface, styrene desorption is enhanced relative to the parent PA desorption, while styrene formation is dramatically quenched on pre-C-covered (lack of adsorbed hydrogen nearby) surface. It appears that only cross-bridged PA associates with adsorbed hydrogen to form styrene that promptly desorbs at 410 K, while vertically aligned PA is less likely to participate in forming styrene.

Keywords

References

  1. Bent, B. E. Chem. Rev. 1996, 96, 1361. https://doi.org/10.1021/cr940201j
  2. Zaera, F. Chem. Rev. 1995, 95, 2651.
  3. Ma, Z.; Zaera, F. Surf. Sci. Rep. 2006, 61, 229. https://doi.org/10.1016/j.surfrep.2006.03.001
  4. Borodzi ski, A. Catal. Lett. 1999, 63, 35. https://doi.org/10.1023/A:1019052618049
  5. Molero, H.; Bartlett, B. F.; Tysoe, W. T. J. Catal. 1999, 181, 49. https://doi.org/10.1006/jcat.1998.2294
  6. Kyriakou, G.; Kim, J.; Tikhov, M. S.; Macleod, N.; Lambert, R. M. J. Phys. Chem. B 2005, 109, 10952. https://doi.org/10.1021/jp044213c
  7. Middleton, R. L.; Lambert, R. M. Catal. Lett. 1999, 59, 15. https://doi.org/10.1023/A:1019027311804
  8. Deng, R.; Herceg, E.; Trenary, M. Surf. Sci. 2004, 560, L195. https://doi.org/10.1016/j.susc.2004.05.012
  9. Lin, J.-L.; Bent, B. E. J. Phys. Chem. 1993, 97, 9713. https://doi.org/10.1021/j100140a030
  10. Somorjai, G. A.; Park, J. Y. Angew. Chem. Int. Ed. 2008, 47, 9212. https://doi.org/10.1002/anie.200803181
  11. Morin, C.; Simon, D.; Sautet, P. Surf. Sci. 2006, 600, 1339. https://doi.org/10.1016/j.susc.2006.01.033
  12. Xi, M.; Bent, B. E. J. Vac. Sci. Technol. B 1992, 10, 2440.
  13. Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Sorensen, R. Z.; Christensen, C. H.; Norskov, J. K. Science 2008, 320, 1320. https://doi.org/10.1126/science.1156660
  14. Guczi, L.; Schay, Z.; Stefler, Gy.; Liotta, L. F.; Deganello, G.; Venezia, A. M. J. Catal. 1999, 182, 456. https://doi.org/10.1006/jcat.1998.2344
  15. Wilhite, B. A.; McCready, M. J.; Varma, A. Ind. Eng. Chem. Res. 2002, 41, 3345. https://doi.org/10.1021/ie0201112
  16. Sohn, Y.; Wei, W.; White, J. M. J. Phys. Chem. C 2007, 111, 5101. https://doi.org/10.1021/jp068398u
  17. [NIST] http://webbook.nist.gov/chemistry/ (22 Nov. 2010)
  18. Burri, D. R.; Choi, K.-M.; Han, S.-C.; Burri, A.; Park, S.-E. Bull. Korean Chem. Soc. 2007, 28, 53. https://doi.org/10.5012/bkcs.2007.28.1.053
  19. Hong, D.-Y.; Vislovskiy, V. P.; Park, Y.-H.; Chang, J.-S. Bull. Korean Chem. Soc. 2006, 27, 789. https://doi.org/10.5012/bkcs.2006.27.5.789
  20. Lloyd, P. B.; Swaminathan, M.; Kress, J. W.; Tatarchuk, B. J. Appl. Surf. Sci. 1997, 119, 267. https://doi.org/10.1016/S0169-4332(97)00178-5
  21. Wei, W. Adsorption, Reaction and Interfacial Electronic Structures of Aromatic Molecules on Single Crystal Surfaces; Ph. D. thesis, Univ. of Texas at Austin, 2005.
  22. Cremer, P. S.; Su, X.; Shen, Y. R.; Somorjai, G. A. J. Am. Chem. Soc. 1996, 118, 2942. https://doi.org/10.1021/ja952800t
  23. Sohn, Y.; Wei, W.; White, J. M. J. Phys. Chem. C 2008, 112, 18531. https://doi.org/10.1021/jp806067k