DOI QR코드

DOI QR Code

Rumen Microbial Population in the In vitro Fermentation of Different Ratios of Forage and Concentrate in the Presence of Whole Lerak (Sapindus rarak) Fruit Extract

  • Suharti, Sri (Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University) ;
  • Astuti, Dewi Apri (Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University) ;
  • Wina, Elizabeth (Indonesian Research Institute for Animal Production) ;
  • Toharmat, Toto (Department of Nutrition and Feed Technology, Faculty of Animal Science, Bogor Agricultural University)
  • Received : 2010.11.10
  • Accepted : 2011.01.16
  • Published : 2011.08.01

Abstract

This experiment was designed to investigate the effect of lerak extract on the dynamic of rumen microbes in the in vitro fermentation of diet with different ratios of forage and concentrate. In vitro fermentation was conducted according to the method of Tilley and Terry (1963). The design of experiment was a factorial block design with 2 factors. The first factor was the ratio of forage and concentrate (90:10, 80:20, and 70:30 w/w) and the second factor was the level of lerak extract (0, 0.6, and 0.8 mg/ml). Total volatile fatty acid (VFA) concentration, proportional VFA and NH3 concentration were measured at 4 h incubation. Protozoal numbers in the buffered rumen fluid after 4 and 24 h of incubation were counted under a microscope. Bacterial DNAs of buffered rumen fluid were isolated from incubated samples after 24 h of incubation using a QiaAmp kit. Total bacteria, Fibrobacter succinogenes, Ruminococcus albus, and Prevotella ruminicola were quantified using real time polymerase chain reaction (PCR). Lerak extract markedly reduced protozoal numbers in buffered rumen fluid of all diets after 24 h of incubation. Total bacteria did not change with lerak extract addition. While no difference in F. succinogenes was found, there was a slight increase in R. albus number and a significant enhancement in P. ruminicola number by increasing the level of lerak extract in all diets. Propionate concentration significantly increased in the presence of lerak extract at level 0.8 mg/ml. It was concluded that the addition of lerak extract could modify rumen fermentation and had positive effects on rumen microbes.

Keywords

References

  1. Benchaar, C., T. A. McAllister and P. Y. Choulnard. 2008. Digestion, rumen fermentation, ciliate protozoal populations, and milk production from dairy cows fed cinnamaldehyde, quebracho condensed tannin, or Yucca schidigera saponin extracts. J. Dairy Sci. 91:4786-4777.
  2. Denman, S. E. and C. S. McSweeney. 2006. Developmentofa realtimePCR assay formonitoring anaerobic fungal and cellulolytic bacterial populationswithin the rumen. FEMS Microbiol. Ecol. 58:572-582. https://doi.org/10.1111/j.1574-6941.2006.00190.x
  3. Francis, G., Z. Keem, H. P. S. Makkar and K. Becker. 2002. The biological action of saponins in animal systems: a review. Br. J. Nutr. 88:587-605. https://doi.org/10.1079/BJN2002725
  4. Guo, Y., J. Liu, Y. Lu, W. Y. Zhu, S. E. Denman and C. S. McSweeney. 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett. Appl. Microbiol. 47:421-426. https://doi.org/10.1111/j.1472-765X.2008.02459.x
  5. Goel, G., H. P. S. Makkar and K. Becker. 2008. Changes in microbial community structure, methanogenesis and rumen fermentation in response to saponin-rich fractions from different plant materials. J. Appl. Microbiol. 105:770-777. https://doi.org/10.1111/j.1365-2672.2008.03818.x
  6. Gutierrez, J. 2007. Observations on bacterial feeding by the rumen ciliate Isotricha prostoma. J. Eukaryotic Microbiol. 5:122-126.
  7. Hamburger, M. I. Slacanin, K. Hostettmann, W. Dyatmiko and Sutarjadi. 1992. Acetylated saponins in molluscicidal activity from Sapindus rarak: Unambiguous structure determination by proton nuclear magnetic resonance and quantitative analysis. Phytochem. Anal. 3:231-237. https://doi.org/10.1002/pca.2800030507
  8. Hess, H. D., M. Kreuzer, T. E. Diaz, C. E. Lascano, J. E. Carulla and C. R. Solvia. 2003. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated fluid. Anim. Feed Sci. Technol. 109:79-94. https://doi.org/10.1016/S0377-8401(03)00212-8
  9. Hsu, J. T., G. C. Fahey, N. R. Merchen and R. I. Mackie. 1991. Effects of defaunation and various nitrogen supplementation regimens on microbial numbers and activity in the rumen of sheep. J. Anim. Sci. 69:1279-1289.
  10. Hu W., J. Liu, J. Ye, Y. Wu and Y. Guo. 2005. Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Technol. 120:333-339. https://doi.org/10.1016/j.anifeedsci.2005.02.029
  11. Ivan, M., L. Neill and T. Entz. 2000. Rumen fermentation and duodenal flow following progressive inoculations of fauna-free wethers with major individual species of ciliate protozoa or total fauna. J. Anim. Sci. 78:750-759.
  12. Kamra, D. N. 2005. Rumen microbial ecosystem. Curr. Sci. 89:1- 12.
  13. Karnati, S. K. R., Z. Yu and J. L. Firkins. 2009. Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining rumen protozoa. II. Interaction of treatment and presence of protozoa on prokaryotic communities. J. Dairy Sci. 92:3861-3873. https://doi.org/10.3168/jds.2008-1437
  14. Koike, S. and Y. Kobayashi. 2001. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol. Lett. 204:361- 366. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x
  15. Makkar, H. P. S. and K. Becker. 1997. Degradation of quillaja saponins by mixed culture of rumen microbes. Lett. Appl. Microbiol. 25:243-245. https://doi.org/10.1046/j.1472-765X.1997.00207.x
  16. Mao, H., J. Wang, Y. Zhou and J. Liu. 2010. Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Anim. Feed Sci. Technol. 129:56-62.
  17. Muetzel, S., R. Akpagloh and K. Becker. 2005. Sapindus rarak saponins do not affect rumen protein degradation in vitro. Proc. Soc. Nutr. Physiol. 14.
  18. Murray, R. K., D. K. Granner and V. W. Rodwell. 2006. Harper's Illustrated Biochemistry, 27TH Edition. The McGraw-Hill Companies, USA.
  19. Tajima, K., R. I. Aminov, T. Nagamine, H. Matsui, M. Nakamura and Y. Benno. 2001. Diet-dependent shifts in the bacterial population of the rumen revealed with real-time PC. Appl. Environ. Microbiol. 67:2766-2774. https://doi.org/10.1128/AEM.67.6.2766-2774.2001
  20. Teferedegne, B. 2000. New perspectives on the use of tropical plants to improve ruminant nutrition. Proc. Nutr. Soc. 59:209- 214. https://doi.org/10.1017/S0029665100000239
  21. Thalib, A., Y. Widiawati, H. Hamid, D. Suherman and M. Sabrani. 1995. The effects of saponins from Sapindusrarak fruit on rumen microbes and host animal growth. Ann Zootech. 44 (Suppl.):161. https://doi.org/10.1051/animres:199505129
  22. Tilley, J. M. A. and R. A. Terry. 1963. A two stage technique for the in vitro digestion of forage. J. Br. Grassland Soc. 18:104- 111. https://doi.org/10.1111/j.1365-2494.1963.tb00335.x
  23. Wallace, R. J., L. Arthaud and C. J. Newbold. 1994. Influence of Yucca shidigera extract on rumen ammonia concentrations and rumen microorganisms. Appl. Environ. Microbiol. 60:1762- 1767.
  24. Wallace, R. J. and C. A. McPherson. 1987. Factors affecting the rate of breakdown of bacterial protein in rumen fluid. Br. J. Nutr. 5:313-323.
  25. Wang, Y., T. A. McAllister, C. J. Newbold, L. M. Rodea, P. R. Cheeke and K. J. Cheng. 1998. Effects of Yucca schidigera extract on fermentation and degradation of steroidal saponins in the rumen simulation technique (RUSITEC). Anim. Feed Sci. Technol. 74:143-153. https://doi.org/10.1016/S0377-8401(98)00137-0
  26. Wang, Y., T. A. McAllister, L. J. Yanke, Z. J. Xu, P. R. Cheeke and K. J. Cheng. 2000. In vitro effects of steroidal saponins from Yucca schidigera extract on rumen microbial protein synthesis and rumen fermentation. J. Sci. Food Agric. 80:2214-2122.
  27. Wina, E., S. Muetzel, E. M. Hoffmann, H. P. S. Makkar and K. Becker. 2005. Saponins containing methanol extract of sapindus rarak affect microbial fermentation, microbial activity and microbial community structure in vitro. Anim. Feed Sci. Technol. 121:159-174. https://doi.org/10.1016/j.anifeedsci.2005.02.016
  28. Wina, E., S. Muetzel and K. Becker. 2006. Effects of daily and interval feeding of Sapindus rarak saponins on protozoa, rumen fermentation parameters and digestibility in sheep. Asian-Aust. J. Anim. Sci. 19:1580-1587. https://doi.org/10.5713/ajas.2006.1580
  29. Yost, W. M., J. W. Young, S. P. Schmidt and A. D. Mcgilliard. 1977. Gluconeogenesis in ruminants: propionic acid production from a high-grain diet fed to cattle. J. Nutr. 107: 2036-2043.

Cited by

  1. Effect of Crude Protein Levels in Concentrate and Concentrate Levels in Diet on <i>In vitro</i> Fermentation vol.27, pp.6, 2014, https://doi.org/10.5713/ajas.2013.13560
  2. on rumen environment, milk yield and milk composition in lactating dairy cows vol.99, pp.2, 2014, https://doi.org/10.1111/jpn.12198
  3. The effect of increased atmospheric temperature and CO2 concentration during crop growth on the chemical composition and in vitro rumen fermentation characteristics of wheat straw vol.6, pp.1, 2015, https://doi.org/10.1186/s40104-015-0045-9
  4. Tropical legume supplementation influences microbial protein synthesis and rumen ecology vol.101, pp.3, 2016, https://doi.org/10.1111/jpn.12458
  5. rumen fermentation, microbial population and methane emission of Hanwoo steers fed high concentrate diets pp.13443941, 2017, https://doi.org/10.1111/asj.12913
  6. Effect of increased dietary crude protein levels on production performance, nitrogen utilisation, blood metabolites and ruminal fermentation of Holstein bulls vol.31, pp.10, 2018, https://doi.org/10.5713/ajas.18.0125
  7. Methanolic extract of Urochloa humidicola on in vitro rumen fermentation vol.53, pp.4, 2018, https://doi.org/10.1590/s0100-204x2018000400012
  8. Effect of tree foliage supplementation of tropical grass diet on in vitro digestibility and fermentation, microbial biomass synthesis and enteric methane production in ruminants vol.51, pp.4, 2011, https://doi.org/10.1007/s11250-018-1772-7
  9. The Impact of Feed Supplementations on Asian Buffaloes: A Review vol.11, pp.7, 2011, https://doi.org/10.3390/ani11072033
  10. Effect of cyanide-degrading bacteria inoculation on performance, rumen fermentation characteristics of sheep fed bitter cassava (Manihot esculenta Crantz) leaf meal vol.66, pp.2, 2011, https://doi.org/10.1016/j.aoas.2021.09.001