DOI QR코드

DOI QR Code

Simulation of plate deformation due to line heating considering water cooling effects

수냉 효과를 고려한 선상가열에 의한 판 변형의 시뮬레이션

  • Ko, Dae-Eun (Department of Naval Architecture and Ocean Engineering, Dong-Eui University) ;
  • Ha, Yun-Sok (Department of Welding Research, Samsung Heavy Industries Co., Ltd.)
  • 고대은 (동의대학교 조선해양공학과) ;
  • 하윤석 (삼성중공업(주) 산업기술연구소 용접연구파트)
  • Received : 2011.04.28
  • Accepted : 2011.06.09
  • Published : 2011.06.30

Abstract

Inherent strain method, a hybrid method of experimental and numerical, is known to be very efficient in predicting the plate deformation due to line heating. For the simulation of deformation using inherent strain method, it is important to determine the magnitude and the region of inherent strain properly. Because the phase of steel transforms differently depending on the actual speed of cooling following line heating, it should be also considered in determining the inherent strain. A heat transfer analysis method including the effects of impinging water jet, film boiling, and radiation is proposed to simulate the water cooling process widely used in shipyards. From the above simulation it is possible to obtain the actual speed of cooling and volume percentage of each phase in the inherent strain region of a line heated steel plate. Based on the material properties calculated from the volume percentage of each phase, it should be possible to predict the plate deformations due to line heating with better precision.

실험적인 방법과 수치적인 방법의 장점을 취한 고유변형도법은 선상가열에 의한 판의 변형을 예측하는데 매우 유용하다. 고유변형도법을 이용한 선상가열에 의한 판 변형의 예측을 위해서는 고유변형도의 크기와 영역을 적절하게 결정하는 것이 중요한데, 선상가열 후의 실제 냉각속도에 따라 강의 상변태 특성이 달라지므로 이 또한 고유변형도 결정에 있어서 고려되어야 한다. 조선 현장에서 많이 사용되는 수냉과정을 모사하기 위해 충돌제트, 막비등, 복사 효과를 포함하는 열전달 해석법을 제안하였으며, 이를 통해 고유변형도 영역의 실제 냉각속도와 상변태 분율을 구할 수 있다. 상변태 분율에 따른 재료의 물성치를 반영함으로써 선상가열에 의한 판의 변형을 보다 정도 있게 예측하는 것이 가능하다.

Keywords

References

  1. T. Nomoto, S. Takechi, K. Shouki, K. Aoyama, M. Enosawa, and M. Saitoh, "Development of Simulator for Plate by Line Heating Considering In-Plane Shrinkage", J. of SNAJ, 170, 1991.
  2. D. E. Ko, C. D. Jang, S. I. Seo, and H. W. Lee, "Realtime Simulation of Deformation due to Line Heating for Automatic Hull Forming System", J. of the SNAK, 36 (4) pp. 116-127, 1999.
  3. C. D. Jang, Y. S. Ha, and D. E. Ko, "An Improved Inherent Strain Analysis for the Prediction of Plate Deformations Induced by Line Heating Considering Phase Transformation of Steel", ISOPE, IV pp.147-152, 2003.
  4. F. P. Incropera and D. P. Dewitt, Fundamentals of Heat and Mass Transfer, WILEY, 5th Edition, 2003.
  5. N. Hatta and H. Osakabe, ISIS Int., 29 (11) pp. 919, 1989. https://doi.org/10.2355/isijinternational.29.919
  6. H. Martin, "Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces", Jr., Eds., Advances in Heat Transfer, Academic Press, New York, 1977.
  7. L. A. Bromley, "Heat Transfer in Stable Film Boiling", Chem. Eng. Prog. 46, pp. 221, 1950.
  8. Y. Misutake and M. Monde, "Heat Transfer during Transient Cooling of High Temperature Surface with an Impinging Jet", Heat and Mass Transfer, 37, pp. 321-328, 2001. https://doi.org/10.1007/s002310000141
  9. N. H. Chung, B. K. Choi, and J. E. Park, "Distortion and Transformation of High Tensile Strength Steel Plate of $50kg/mm^2$ Grade due to Line Heating", J. of KWS, 3 (1) pp. 11-21, 1985.
  10. M. Atkins, "Atlas of CCTD for engineering steels", British Steel Corp, 1977.