DOI QR코드

DOI QR Code

Fabrication of Inorganic Filler-Polyurethane Composite Foam and Postcure Effect on Mechanical Properties

무기분말-폴리우레탄 복합체폼의 제조 및 후처리가 기계적 물성에 미치는 영향

  • Ahn, Won-Sool (Department of Chemical Engineering, Keimyung University) ;
  • Lee, Boo-Youn (Department of Mechenical and Automotive Engineering, Keimyung University)
  • 안원술 (계명대학교 화학공학과) ;
  • 이부윤 (계명대학교 기계자동차공학과)
  • Received : 2011.04.11
  • Accepted : 2011.05.12
  • Published : 2011.05.31

Abstract

Inorganic micropowder(Ce500)-filled polyurethane composite foams were fabricated and the effects of postcure on the mechanical properties were studied by the measurement of polymerization temperature, TGA, and UTM test. Temperature for the maximum reaction rate of 20wt% Ce500-filled sample reached upto ca. $100^{\circ}$ within 10min. and, for the same sample, double mode thermal decomposition was observed around two distinguished temperatures of $250^{\circ}$ and $350^{\circ}C$. The activation energies for the decomposition were calculated using Kissinger method as 117.4 and 139.4 kJ/mol, respectively. While break strength and hardness of the sample seemed nearly affected by postcure time at $160^{\circ}C$, elongation, however, was significantly changed upto 1.72 times after 7hrs treatment. As the results, the condition of 7hrs at $160^{\circ}$ was considered as the optimum postcure condition for the Ce500-filled PU composite foam samples.

0.5mm 크기의 타원형 무기분말을 충전한 폴리우레탄 폼 복합재료에 대한 가교반응의 특성과 후가교처리에 따른 기계적 물성의 변화에 대하여 생성반응의 온도 측정, TGA, 및 인장시험을 이용하여 연구하였다. 중량비로 20% 정도를 충전하는 $CeO_2$ 무기분말(Ce500)을 충전한 샘플 폼복합재료는 10분 이내에 $100^{\circ}$ 정도의 최고 반응속도점 온도에 도달하였으며, 만들어진 샘플의 열분해반응은 약 $250^{\circ}$ 부근의 저온 열분해와 약 $350^{\circ}$ 부근의 고온 열분해의 이중모드로 일어나는 것이 관찰되었다. Kissinger의 해석방법에 의한 분해활성화에너지는 저온영역에서의 열분해에 대하여서는 117.4kJ/mol이며 고온영역에 대해서는 139.4kJ/mol의 값을 각각 나타내었다. $160^{\circ}C$에서의 샘플의 후가교 처리시간에 따른 기계적 성질은 후가교 시간에 따라서 파단응력이나 경도는 크게 변하지 않는 것으로 나타났으나 파단신율은 최대 1.72배까지 증가하였으며, 본 실험에서 사용된 샘플의 경우 $160^{\circ}C$, 7시간 정도의 후가교 시간이 가장 적절한 후가교 조건으로 생각되었다.

Keywords

References

  1. W. Ahn and S. Yoon, "A Study on Formation and Thermal Decomposition Kinetics of PU Elastomers by Dynamic DSC and TGA Analysis", Elastomer, 42(1), 47-54 (2007).
  2. W. Ahn and H. S. Kim, "Reactions and Properties of a RT-Castable PU Elastomer Modified with Oligomeric Diol", Elastomer, 43(1), 18-24 (2008).
  3. O. Gunter, "Polyurethane Handbook", 2nd ed, Hanser Gardner Publications, Ch.8, 387-405(1993).
  4. U. Henri, "Chemistry and Technology of Isocyanate", John Wiley & Sons, New York, 1996.
  5. W. Ahn and S. H. Lee, J. Elastomer, 38, 4(2003).
  6. H. E. Kissinger, "Reaction Kinetics in Differential Thermal Analysis", Analytical Chemistry, 29(11), 1702-1706 (1957). https://doi.org/10.1021/ac60131a045
  7. C. Prisacariu and I. Agherghinei, "Reactions in Solid State within Polyurethanes. Kinetics and Postcure Reaction Mechanism in Casting Polyurethane Elastomers", Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 37, 785-806(2000). https://doi.org/10.1081/MA-100101123
  8. Johnson Controls Technology Company, "Post-Cure of Molded Polyurethane Foam Products", WIPO Patent WO/2010/033999A1, 2010.
  9. G-N. Chen, P-H. Liu, M-S. Chen, and K-N. Chen, "Convenient post-curing reactions for aqueous-based polyurethane anionomers", Journal of Polymer Research, 4(3), 165-175(1997). https://doi.org/10.1007/s10965-006-0022-2
  10. M. W. Cho, and Y. W. Chang, "Synthesis and Physical Properties of Polyurethane/Clay Nanocomposite", J. Korean Ind. Eng. Chem., 11(5), 517-521 (2000).