DOI QR코드

DOI QR Code

Review of Soil Structure Quantification from Soil Images

  • Chun, Hyen-Chung (National Academy of Agricultural Science, Rural Development Administration) ;
  • Gimenez, Daniel (Department of Environmental Sciences, Rutgers, The State University of New Jersey) ;
  • Yoon, Sung-Won (National Institute for Agronomic Research) ;
  • Park, Chan-Won (National Academy of Agricultural Science, Rural Development Administration) ;
  • Moon, Yong-Hee (National Academy of Agricultural Science, Rural Development Administration) ;
  • Sonn, Yeon-Kyu (National Academy of Agricultural Science, Rural Development Administration) ;
  • Hyun, Byung-Keun (National Academy of Agricultural Science, Rural Development Administration)
  • 투고 : 2011.03.18
  • 심사 : 2011.06.22
  • 발행 : 2011.06.30

초록

Soil structure plays an important role in ecological system, since it controls transport and storage of air, gas, nutrients and solutions. The study of soil structure requires an understanding of the interrelations and interactions between the diverse soil components at various levels of organization. Investigations of the spatial distribution of pore/particle arrangements and the geometry of soil pore space can provide important information regarding ecological or crop system. Because of conveniences in image analyses and accuracy, these investigations have been thrived for a long time. Image analyses from soil sections through impregnated blocks of undisturbed soil (2 dimensional image analyses) or from 3 dimensional scanned soils by computer tomography allow quantitative assessment of the pore space. Image analysis techniques can be used to classify pore types and quantify pore structure without inaccurate or hard labor in laboratory. In this paper, the last 50 years of the soil image analyses have been presented and measurements on various soil scales were introduced, as well. In addition to history of image analyses, a couple of examples for soil image analyses were displayed. The discussion was made on the applications of image analyses and techniques to quantify pore/soil structure.

키워드

참고문헌

  1. Andraud, C., A. Beghdadi, and J. Lafait. 1994. Entropic analysis of random morphologies. Physica A. 207:208-212. https://doi.org/10.1016/0378-4371(94)90374-3
  2. Andraud, C., A. Beghdadi, E. Haslund, J. Lafait, and B. Virgin. 1997. Local entropy characterization of correlated random microstructures. Physica A. 235:307-318. https://doi.org/10.1016/S0378-4371(96)00354-8
  3. Bastardie. F, Y. Capowiez, J.R. de Dreuzy, and D. Cluzeau. 2003. X-ray tomographic and hydraulic characterization of burrowing by three earthworm species in repacked soil cores. Appl. Soil Ecol. 24(1):3-16. https://doi.org/10.1016/S0929-1393(03)00071-4
  4. Bartoli, F., V. Genevois-Gomendy, V. Royer, S. Niquet, H. Vivier, and R. Grayson. 2005. A multiscale study of silty soil structure. Eur. J. Soil Sci. 56(2):207-223. https://doi.org/10.1111/j.1365-2389.2004.00668.x
  5. Bear, Jacob. 1974. Dynamics of fluids in porous media. Dover Publications, Inc., New York.
  6. Beghdadi, A., C. Andraud, J. Lafait, J. Peiro, and M. Perreau. 1993. Entropic and multifractal analysis of disordered morphologies. Fractals 1:671-679. https://doi.org/10.1142/S0218348X93000691
  7. Bentz, D.P. and N.S. Martys. 1994. Hydraulic radius and transport in reconstructed model three-dimensional porous media. Transport Porous Med. 17:221-238. https://doi.org/10.1007/BF00613583
  8. Biswal, B, C. Manwart, and R. Hilfer. 1998. Three-dimensional local porosity analysis of porous media. Physica A. 255 (3-4): 221-241. https://doi.org/10.1016/S0378-4371(98)00111-3
  9. Boger, F., J. Feder, T. Jossang, and R. Hilfer. 1992. Microstructural sensitivity of local porosity distributions. Physica A. 187:55-70. https://doi.org/10.1016/0378-4371(92)90408-I
  10. Boix-Fayos, C., A. Calvo-Cases, A.C. Imeson, and M.D. Soriano- Soto. 2001. Influence of soil properties on the aggregation of some Mediterranean soils and the use of aggregate size and stability as land degradation indicators. Catena. 44:47-67. https://doi.org/10.1016/S0341-8162(00)00176-4
  11. Brady, N.C. and R.R. Weil. 2000. The nature and properties of soils. 12th edition. Prentice Hall. Upper Saddle River, New Jersey.
  12. Capowiez, Y., P. Renault, and L. Belzunces, 2001. Three-dimensional trajectories of 60Co-labelled earthworms in artificial cores of soil. Eur. J. Soil Sci. 52:365-375. https://doi.org/10.1046/j.1365-2389.2001.00384.x
  13. Capowiez, Y., A. Pierret, and C.J. Moran. 2003. Characterisation of the three dimensional structure of earthworm burrow systems using image analysis and mathematical morphology. Biol. Fertil. Soils 38:301-310. https://doi.org/10.1007/s00374-003-0647-9
  14. Chatzis, I. and F.A.L. Dullien, 1975. Modelling pore structure by 2-D and 3-D networks with application to sandstones, J. Can. Pet. Technol. 16(1):97-108.
  15. Chun, H.C., D. Gimenez, and S.W. Yoon. 2008. Morphology, lacunarity and entropy of intra-aggregate pores: Aggregate size and soil management effects. Geoderma. 146(1-2):83-93. https://doi.org/10.1016/j.geoderma.2008.05.018
  16. Cıslerova, M. and J. Votrabova. 2002. CT derived porosity distribution and flow domains. J. Hydrol. 267:186-200. https://doi.org/10.1016/S0022-1694(02)00149-X
  17. Crawford, J.W., R. Karl, and I.M. Young. 1993. Quantification of fungal morphology, gaseous transport and microbial dynamics in soil: an integrated framework utilizing fractal geometry. Geoderma. 56:157-172. https://doi.org/10.1016/0016-7061(93)90107-V
  18. Dathe, A., S. Eins, J. Niemeyer, and G. Gerold. 2001. The surface fractal dimension of the soil-pore interface as measured by image analysis. Geoderma, 103:203-229. https://doi.org/10.1016/S0016-7061(01)00077-5
  19. Dexter, A.R. 1976. Internal structure of tilled soil. J. Soil Sci. 27:267-278. https://doi.org/10.1111/j.1365-2389.1976.tb01996.x
  20. Dexter, A.R. 1985. Shapes of aggregates from tilled layers of some dutch and Australian soils. Geoderma. 35:91-107. https://doi.org/10.1016/0016-7061(85)90023-0
  21. Dexter, A.R. 1988. Advances in characterization of soil structure. Soil Till. Res. 11:199-238. https://doi.org/10.1016/0167-1987(88)90002-5
  22. Dexter, A.R. and I. Hakansson. 1989. Internal micro-structure of soil clods measured by fracture surface analysis. Swed. J. Agr. Res. 19:77-83.
  23. Dexter, A.R. 2002. Soil structure: the key to soil function. pp 57-70. In: Pagliai, M. and R. Jones (eds). Sustainable Land Management-Environmental Protection, A Soil Physical Approach. IUSS.
  24. Edwards, W.M., M.J. Shipitalo, and L. D. Norton. 1988. Contribution of macroporosity to infiltration into a continuous corn notilled watershed: implications for contaminant movement. J. Contam. Hydrol. 3:193-205. https://doi.org/10.1016/0169-7722(88)90031-9
  25. Edwards, W.M., M.J. Shipitalo, L.B. Owens, and L. D. Norton. 1990. Effects of lumbricus terrestris L. burrows on hydrology of continuous no-till corn fields. Geoderma. 46:73-84. https://doi.org/10.1016/0016-7061(90)90008-W
  26. Fara, H.D. and A.E. Scheidegger. 1961. Statistical geometry of porous media. J. Geophys. Res. 66(10):3279-3285. https://doi.org/10.1029/JZ066i010p03279
  27. Fatt, I. 1956. The network model of porous media, I: Capillary pressure characterizations. Trans. AIME. 207:144.
  28. Gibson, J.R., H. Lin, and M.A. Burns. 2006. A comparison of fractal analytical methods on 2- and 3-dimensional computed tomographic scans of soil aggregates. Geoderma. 134:335-348. https://doi.org/10.1016/j.geoderma.2006.03.052
  29. Gimenez, D., J. Karmon, A. Posadas, and R. Shaw. 2002. Fractal dimensions of mass estimated from intact and eroded soil aggregates. Soil Till. Res. 64:165-172. https://doi.org/10.1016/S0167-1987(01)00253-7
  30. Gouyet, J.G. 1996. Physics and Fractal Structures. Springer, New York.
  31. Holden, N.M. 1995. Temporal variation in ped shape in an old pasture soil. Catena. 24:1-11. https://doi.org/10.1016/0341-8162(94)00034-C
  32. Horgan, G.W. 1998. Mathematical morphology of analyzing soil structure from images. Eur. J. Soil Sci. 49:161-173. https://doi.org/10.1046/j.1365-2389.1998.00160.x
  33. Huisman, J.A., J.J.J.C. Snepvangers, W. Bouten, and G.B.M. Heuvelink. 2002. Mapping spatial variation in surface soil water content: comparison of ground-penetrating radar and time domain reflectometry. J. Hydrol. 269:194-207. https://doi.org/10.1016/S0022-1694(02)00239-1
  34. Kaluarachchi, J., V. Cvetkovic, and S. Berglund. 2000. Stochastic analysis of oxygen- and nitrate-based biodegradation of hydrocarbons in aquifers. J. Contam. Hydrol. 41:335-365. https://doi.org/10.1016/S0169-7722(99)00072-8
  35. Karlen, D.L. 2002. Structure, plant establishment and. pp 1269- 1275. In: Lal, R. (ed). Encyclopedia of Soil Science. Marcel Dekker, Inc.
  36. Kay, B.D. A.P. da Silva, and J.A. Baldock. 1997. Sensitivity of soil structure to changes in organic carbon content: Predictions using pedotransfer functions. Can. J. Soil Scl. 77(4):655-667. https://doi.org/10.4141/S96-094
  37. Keith, C.C. and G.D. Buchan. 2002. Porosity and pore size distribution. In: Lal, R. (ed). Encyclopedia of Soil Science. Marcel Dekker, Inc.
  38. Kirchhof, G. and H. Daniel. 2003. A technique to assess smallscale heterogeneity of chemical properties in soil aggregates. Aust. J. Soil Rres. 41:919-932. https://doi.org/10.1071/SR02125
  39. Kravchenko, A.N. 2008. Stochastic simulations of spatial variability based on multifractal characteristics. Vadose Zone J. 7(2): 521-524. https://doi.org/10.2136/vzj2007.0009
  40. Kutilek, M. and D.R. Nielsen. 1994. Soil Hydrology: Geoecology Textbook. Cantena Verlag. Cremlinggen-Destedt, Germany.
  41. Lin, T.L. and L.W. Hourng. 2005. Determination of applicable local porosity distributions in a powder bed by the maximum entropy method. Adv. Powder Technol. 16(3):231-246. https://doi.org/10.1163/1568552053750189
  42. Liu, H.H. and F.J. Molz. 1997. Multifractal analyses of hydraulic conductivity distributions. Water Resour. Res. 33(11):2483- 2488. https://doi.org/10.1029/97WR02188
  43. Luo, L.F., H. Lin, and P. Halleck. 2008. Quantifying soil structure and preferential flow in intact soil using x-ray computed tomography. Soil Sci. Soc. Am. J. 72(4):1058-1069. https://doi.org/10.2136/sssaj2007.0179
  44. Masad, E. and B. Muhunthan. 1997. Three-dimensional characterization and simulation of anisotropic soil fabric. J. Geotech. And Geoenvir. Engrg. 126(3):199-207.
  45. McBratney, A.B., C.J. Moran, J.B. Stewart, S.R. Cattle, and A.J. Koppi. 1992. Modifications to a method of rapid assessment of soil macropore structure by image analysis. Geoderma. 53: 255-274. https://doi.org/10.1016/0016-7061(92)90058-F
  46. Monga, O., M. Bousso, P. Garnier, and V. Pot. 2008. 3D geometric structures and biological activity: Application to microbial soil organic matter decomposition in pore space. Ecol. Model. 216(3-4):291-302. https://doi.org/10.1016/j.ecolmodel.2008.04.015
  47. Moran, C.J. and A.B. McBratney. 1992. Acquisition and analysis of three component digital images of soil pore structure. I. Method. J. Soil Sci. 43:541-549. https://doi.org/10.1111/j.1365-2389.1992.tb00159.x
  48. Nunan, N., K. Ritz, M. Rivers, D.S. Feeney, and I.M. Young. 2006. Investigating microbial micro-habitat structure using X-ray computed tomography, Geoderma. 133:398-407. https://doi.org/10.1016/j.geoderma.2005.08.004
  49. Oleschko, K., F. Brambila, F. Aceff, and L.P. Mora. 1997. From fractal analysis along a line to fractals on the plane. Soil Till. Res. 45:389-406.
  50. Oleschko, K., G. Korvin, A.S. Balankin, R.V. Khachaturov, L. Flores, B. Figueroa, J. Urrutia, and F. Brambila. 2002. Fractal Scattering of Microwaves from Soils. Phys. Rev. Lett. 89(18): 188501 1-4. https://doi.org/10.1103/PhysRevLett.89.188501
  51. Olson, R., H. Nariya, K. Yokota, Y. Kamio, and E. Gouaux, 1999. Crystal structure of Staphylococcal LukF delineates conformational changes accompanying formation of a transmembrane channel, Nature Struct. Biol. 6:134-140. https://doi.org/10.1038/5821
  52. Perfect, E. and B.D. Kay. 1995. Applications of fractals in soil and tillage research: A review. Soil Till. Res. 32(102):1-20.
  53. Perret, J.S., S.O. Prasher, and A.R. Kacimov. 2003. Mass fractal dimension of soil macropores using computed tomography: from the box-counting to the cube-counting algorithm. Eur. J. Soil Sci. 53(3):569-579.
  54. Peth, S., R. Horn, F. Beckmann, T. Donath, J. Fischer, A.J.M. Smucker. 2008. Three-dimensional quantification of intra-aggregate pore-space features using synchrotron-radiation-based microtomography. Soil Sci. Soc. Am. J. 72(4):897-907. https://doi.org/10.2136/sssaj2007.0130
  55. Pierret, J., S.O. Prasher, A. Kantzas, and C. Langford. 1999. Threedomensional quantification of macropore networks in undisturbed soil cores. Soil Sci. Soc. Am. J. 63:1530-1543. https://doi.org/10.2136/sssaj1999.6361530x
  56. Pierret A, C.J. Moran, and C. Doussan. 2005. Conventional detection methodology is limiting our ability to understand the roles and functions of fine roots. New Phytol 166:967-980. https://doi.org/10.1111/j.1469-8137.2005.01389.x
  57. Pohlmann, K., A. Hassan, and J. Chapman. 2000. Description of hydrogeologic heterogeneity and evaluation of radionuclide transport at an underground nuclear test. J. Contam. Hydrol. 44:353-386. https://doi.org/10.1016/S0169-7722(00)00100-5
  58. Posadas, A.N.D., D. Gimenez, M. Bittelli, C.M.P. Vaz, and M. Flury. 2003. Multifractal characterization of soil particle-size distributions. Soil Sci. Soc. Am. J. 65(5):1361-1367.
  59. Pozdnyakova, L, D. Gimenez, and P.V. Oudemans. 2005. Spatial analysis of cranberry yield at three scales. Agron. J. 97(1):49-57. https://doi.org/10.2134/agronj2005.0049
  60. Rachman, A., S. H. Anderson, and C. J. Gantzer. 2005. Computedtomographic measurement of soil macroporosity parameters as affected by stiff-stemmed grass hedges. Soil Sci. Soc. Am. J. 69(5):1609-1616. https://doi.org/10.2136/sssaj2004.0312
  61. Ringrose-Voase, A.J. and C. Nys. 1990. One-dimensional image analysis of soil structure. II. Interpretation of parameters with respect to four forest soil profiles. J. Soil Sci. 41:513-527. https://doi.org/10.1111/j.1365-2389.1990.tb00083.x
  62. Russell, M.B. 1941. Pore-size distribution as a measure of soil structure. Soil Sci. Soc. Am. 6:108-112.
  63. Serra, J. 1988. Image Analysis and Mathematical Morphology. Vol. 1. Academic press.
  64. Shannon, C.E. 1948. A mathematical theory of communication. Bell. Syst. Tech. J. 27:379-656. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
  65. Smetten, K.R.J. and N. Collis-George. 1985. Statistical characterization of soil biopores using a soil peel method. Geoderma 36:27-36. https://doi.org/10.1016/0016-7061(85)90061-8
  66. Splajt, T., G. Ferrier, and L.E. Frostick. 2003. Application of ground penetrating radar in mapping and monitoring landfill sites. Environ. Geol. 44:963-967. https://doi.org/10.1007/s00254-003-0839-5
  67. Taina, I.A., R.J. Heck, and T.R. Elliot. 2008. Application of X-ray computed tomography to soil science: A literature review. Can. J. Soil Sci. 88(1):1-20. https://doi.org/10.4141/CJSS06027
  68. Talukdar, M.S., O. Torsaeter, M.A. Ioannidis, and J.J. Howard. 2002. Stochastic reconstruction, 3D characterization and network modeling of chalk. J. Petrol. Sci. Eng. 35(1-2):1-21. https://doi.org/10.1016/S0920-4105(02)00160-2
  69. Tarquis, A.M., K.J. McInnes, J.R. Keys, A. Saa, M.R. Garcia, and M.C. Diaz. 2006. Multiscaling analysis in a structured clay soil using 2D images, J. Hydrol. 322:236-246. https://doi.org/10.1016/j.jhydrol.2005.03.005
  70. Tennekoon, L., M.C. Boufadel, D. Lavallee, and J. Weaver. 2003. Multifractal anisotropic scaling of the hydraulic conductivity. Water Resour. Res. 39(7):1193.
  71. Treseder, K.K. and M.F. Allen. 2000. Mycorrhizal fungi have a potential role in soil carbon storage under elevated $CO_{2}$ and nitrogen deposition. New Phytol. 147:189-200. https://doi.org/10.1046/j.1469-8137.2000.00690.x
  72. VandenBygaart, A.J. and R. Protz. 1999. The representative elementary area REA in studies of quantitative soil micromorphology. Geoderma. 89:333-346. https://doi.org/10.1016/S0016-7061(98)00089-5
  73. Wittmus, H.D. and A.P. Mazurak. 1958. Chemical and physical properties of soil aggregates in a Brunizem soil. Soil Science Society of America Proceedings 22:1-5. https://doi.org/10.2136/sssaj1958.03615995002200010001x
  74. Wong, R.C.K. and R. Wibowo. 2000. Tomographic evaluation of air and water flow patterns in soil column. Geotech. Test. J. 23(4):413-422. https://doi.org/10.1520/GTJ11062J
  75. Yelshin, A. 1996. On the possibility of using information entropy as a quantitative description of porous media structural characteristics. J. Membrane Sci. 117:279-289. https://doi.org/10.1016/0376-7388(96)00083-X
  76. Young, I.M. and J.W. Crawford. 1992. The analysis of fracture profiles of soil using fractal geometry. Aust. J. Soil Res. 30: 291-295. https://doi.org/10.1071/SR9920291
  77. Young, I.M., J.W. Crawford, and C. Rappoldt. 2001. New methods and models for characterizing structural heterogeneity of soil. Soil Till. Res. 61:33-45. https://doi.org/10.1016/S0167-1987(01)00188-X