DOI QR코드

DOI QR Code

Soil Chemical Property, Mortality Rates and Growth of Planting Trees from Soil Covering Depths in Coastal Reclaimed Land of Asan Area

아산지역 해안매립지의 복토높이에 따른 토양화학성, 수목 고사율 및 생장 특성

  • 변재경 (국립산림과학원 산림복원연구과) ;
  • 김춘식 (경남과학기술대학교 산림자원학과) ;
  • 임채철 (한국토지주택공사) ;
  • 정진현 (국립산림과학원 산림복원연구과)
  • Received : 2011.05.16
  • Accepted : 2011.06.22
  • Published : 2011.06.30

Abstract

It is important to determine optimum soil covering depths for tree survival and growth because soil covering depths for establishing tree planting bases in coastal reclaimed lands are related to the costs for soil collection, transportation and land reclamation. The objectives of this study were carried out to determine optimum soil covering depths for the normal growth of planted trees in a coastal reclaimed land. The study sites were located in Asan National Industrial Complex in Pyeongtaek City, Gyeonggi-do. Four tree species (Pinus thunbergii, Chamaecyparis pisifera, Zelkova serrata, Quercus acutissima) with one hundred eighty trees of each species were planted in various depths of soil covering (no soil covering, 0.5 m, 1.5 m, 2.0 m soil covering treatments) on April 1998, and the tree growth patterns were measured on September 2000. The change of soil properties, tree mortality rate, root collar diameter and height growth were measured from each soil covering depth treatment on September 2000. Soil pH, EC, exchangeable cations ($K^+$, $Na^+$, $Ca^{2+}$, $Mg^{2+}$), anion $Cl^-$, and base saturation increased with decreased soil covering depths. The mortality rates of tree species showed decreased with increased soil covering depths. The height growth of tree species increased with increased soil covering depths. Height growth of Pinus thunbergii was significantly different between the soil covering depth below 0.5m and other three covering depths, while the growth of other species (C. pisifera, Z. serrata, Q. acutissima) was significantly higher in soil covering depths below 1.5 m than in other soil covering depth treatments. The root collar diameter growth of all tree species showed increasing trends with increased soil covering depths. It is recommended to cover the soil depths above 1.5 m to decrease mortality and to stimulate the tree growth of C. pisifera, Z. serrata and Q. acutissima, while P. thunbergii which is a salt tolerate species could be planted in the 1.0 m soil covering depth.

해안매립지에서 식재지반 조성을 위한 복토높이에 따른 토양의 채취, 운반 및 매립에 소요되는 비용이 매우 큰 차이가 있기 때문에 수목의 정상생육이 가능한 적정 복토높이를 구명하는 것은 매우 중요하다. 본 연구는 아산국가산업단지에서 해송, 화백, 느티나무 및 상수리나무에 대하여 복토처리별 (대조구, 0.5 m, 1.0 m, 1.5 m, 2.0 m 복토구) 로 식재 후 2년 6개월 경과한 후 토양화학성, 수목 고사율, 수고 및 근원경 생장의 변화를 조사하였다. 토양화학성은 복토높이가 낮을수록 pH, EC, 염기총량 및 염기포화도가 높아지고 $K^+$, $Na^+$, $Ca^{2+}$, $Mg^{2+}$, $Cl^-$ 등 염류함량이 증가하였다. 특히 1 m 복토구 이하에서 이들 화학성분의 농도가 높아져, 수목의 고사율 및 생장에 직접적인 영향을 준 것으로 나타났다. 수목 고사율은 복토높이가 높을수록 낮아지는 경향이 있었으며, 1.5 m 복토구 미만에서 고사율이 급격히 증가하였다. 수고와 근원경 생장은 복토처리가 높을수록 양호하게 나타나는 경향이 있었다. 수고생장은 해송의 경우 0.5 m 복토구와 나머지 3개 처리 간에 유의적인 생장차이가 있었으며 화백, 느티나무, 상수리나무는 1.5 m 복토구 미만에서 유의적인 생장차가 있었다. 근원경의 경우 식재수종 모두 복토높이가 높을수록 생장이 양호하였으며 1.5 m 복토구와 2.0 m 복토구 간 생장차이가 없었다. 본 연구결과에 따르면 해안매립지의 복토높이에 따른 고사율 및 생육특성은 식재수종에 따라 차이가 있으며 해송의 경우 1 m 이내의 복토도 가능한 반면에 화백, 느티나무 및 상수리나무는 1.5 m 이상 복토가 필요할 것으로 보인다.

Keywords

References

  1. Allen, J.A., J.L. Chambers, and M. Stine. 1994. Prospects for increasing that salt tolerance of forest trees: a review. Tree Physio. 14:843-853. https://doi.org/10.1093/treephys/14.7-8-9.843
  2. Byun, J.K. 1997. Rooting rate of each tree species planted in coastal reclaimed areas - In Gunsan National Industrial Complex-. Journal of Korean Forest Society 78:31-34.
  3. Choi, K., J.K. Byun et al. 2000. Restoration and management of forest in environmentally damaged areas - soil management and planting technology development in coastal reclaimed areas-. pp. 119-278. MIFAFF (in Korean).
  4. Choi, M.K. 1988. Characteristics of salt tolerance in woody species. p.53, Ph. D. Thesis, Kangwon National University. Chunchon, Korea.
  5. Dunn, G.M., D.W. Taylor, M.R. Nester, and T.B. Beetson. 1994. Performance of twelve selected Australian tree species on a saline site southeast Queensland. For. Ecol. Manage. 70:255-264. https://doi.org/10.1016/0378-1127(94)90091-4
  6. Forest Research Institute, 1992. An illustrated guide to Korean Tree. p. 562. Seoul, in Korean.
  7. Honma, T. 1973. A study for landscape planting in the reclaimed seaside areas by sand pump. Ph.D.Thesis, The University of Tokyo (in Japanese).
  8. Jeoung, J.H., K.S. Koo, C.H. Lee, and C.S. Kim. 2002. Physico-chemical properties of Korean forest soils by regions. Korean J. Soil. Sci. Fert. 91(6):694-700.
  9. Kim, D.K. 2001. Physico-chemical properties of soils at the ground of landscape planting in reclaimed land from the sea. Journal of the Korean Society for Environmental Restoration and Revegetation Tecnolog. 4(4):12-18.
  10. Kodaira, T., K. Aonuma, and K. Sano. 1984. An investigation for the factor of hindering growth and for the condition on growth of Japanese black pine planted forest on reclaimed land of chiba makuhari residential area, Bulletin of the Chiba Prefectural Forestry Technology Center 4:63-69 (in Japanese).
  11. Koo, B.H., J.S. Kang, and K.S. Jang. 1999. A study of soil characteristics in coastal reclaimed areas for planting Ground Treatment. Korean Society of Environment and Ecology 13(1):89-95 (in Korea).
  12. Loveland, P.J. 1990. Electrical Conductivity-Salts and Soils. Landscape Design. pp. 189.
  13. Madsen, P.A. and D.R. Mulligan. 2006. Effect of NaCl on emergence and growth of a range of provenances of Eucalyptus citriodora, Eucalyptus populnea, Eucalyptus camaldulensis and Acacia salicina. For. Ecol. Manage. 228: 151-159.
  14. Nakajima, Y. 1992. Planting design, build, management. Economic Research Institute (in Japanese).
  15. National Institute of Agricultural Science and Technology. 2000. Methods of soil and plants chemical analysis. NIAST. 202pp.
  16. Niknam, S.R. and J. McComb. 2000. Salt tolerance screening of selected Ausralian woody species- a review. For. Ecol. Manage. 139:1-19. https://doi.org/10.1016/S0378-1127(99)00334-5
  17. Okazaki, M., I. Yamane, T. Kodaira. 1982. Physiochemical property of soil in reclaimed land. Japanese Society of Soil Science and Plant Nutrition. 53(3):203-208 (in Japanese).
  18. Pallardy, S.G. 2008. Physiology of woody plants. 3rd ed. Elsevier. 454pp.
  19. Richards, L.A. 1954. Diagnosis and improvement of saline and alkali soils. Agriculture handbook No. 60. USDA.
  20. SAS Institute Inc. 2003. SAS/STAT Statistical software. Version 9.1. SAS publishing Cary, NC.
  21. Storey, R. 1995. Salt tolerance, ion relation, and the effect of root medium on the response of citrus to salinity. Aus. J. of Plant Physio. 22:101-114. https://doi.org/10.1071/PP9950101
  22. Tomar, O.S., P.S. Minhas, V.K. Shrma, Y.P. Singh, and R.K. Gupta. 2003. Performance of 31 tree species and soil conditions in a plantation established with saline irrigation. For. Ecol. Manage. 177:333-346. https://doi.org/10.1016/S0378-1127(02)00437-1
  23. Yun, K.B. 1989. Landscape planting and design. pp. 319. Ilchokak (in Korean).

Cited by

  1. Effect of Wind Break on the Early Growth of Pinus thunbergii at Saemangum Sea-wall vol.15, pp.4, 2013, https://doi.org/10.5532/KJAFM.2013.15.4.210