DOI QR코드

DOI QR Code

Synergistic Effects of Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria for Sustainable Agricultural Production

  • Ramasamy, Krishnamoorthy (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Joe, Manoharan Melvin (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Kim, Ki-Yoon (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Lee, Seon-Mi (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Shagol, Charlotte (Department of Agricultural Chemistry, Chungbuk National University) ;
  • Rangasamy, Anandham (Department of Agricultural Microbiology, Agricultural College and Research Institute, Tamil Nadu Agricultural University) ;
  • Chung, Jong-Bae (Division of Life and Environmental Science, Daegu University) ;
  • Islam, Md. Rashedul (Department of Biology and Oceanography, Inha University) ;
  • Sa, Tong-Min (Department of Agricultural Chemistry, Chungbuk National University)
  • 투고 : 2011.07.15
  • 심사 : 2011.07.29
  • 발행 : 2011.08.31

초록

Soil microorganisms play a major role in improving soil fertility and plant health. Symbiotic arbuscular mycorrhizal fungi (AMF) form a key component of the soil microbial populations. AMF form a mutualistic association with the host plant and exert a positive influence on its growth and nutrient uptake. The establishment of mycorrhizal symbioses with the host plant can positively be influenced by plant growth promoting rhizobacteria through various mechanisms such as increased spore germination and hyphal permeability in plant roots. Though there are evidences that combined interactions between AMF and PGPR can promote the plant growth however mechanisms of these interactions are poorly understood. Better understanding of the interactions between AMF and other microorganisms is necessary for maintaining soil fertility and enhancing crop production. This paper reviews current knowledge concerning the interactions between AMF and PGPR with plants and discusses on enhanced nutrient availability, biocontrol, abiotic stress tolerance and phytoremediation in sustainable agriculture.

키워드

참고문헌

  1. Abeles, F.B., P.W. Morgan, and M.E. Saltveit. 1992. Ethylene in plant biology. 2nd ed. Academic Press, San Diego, California.
  2. Akkopru, A. and S. Demir. 2005. Biological control of fusarium wilt in tomato caused by Fusarium oxysporum f. sp. lycopersici by AMF Glomus intraradices and some rhizobacteria. J. Phytopathol. 153:544-550. https://doi.org/10.1111/j.1439-0434.2005.01018.x
  3. Alexandratos, N. 1999. World food and agriculture: outlook for the medium and longer term. Proc. Natl. Acad. Sci. 96:5908- 5914. https://doi.org/10.1073/pnas.96.11.5908
  4. Antunes, P.M., D. Deaville, and M.J. Goss. 2006. Effect of two AMF life strategies on the tripartite symbiosis with Bradyrhizobium japonicum and soybean. Mycorrhiza 16:167-173. https://doi.org/10.1007/s00572-005-0028-3
  5. Araujo, F.F. 2008. Inoculacao de sementes com Bacillus subtilis, formulado com farinha de ostras e desenvolvimento de milho, soja e algodao. Cienc Agrotec. 32:456-462. https://doi.org/10.1590/S1413-70542008000200017
  6. Arthurson, V., K. Hjort, D. Muleta, L. Jaderlund, and U. Granhall. 2011. Effects on Glomus mosseae root colonization by Paenibacillus polymyxa and Paenibacillus brasilensis strains as related to soil P-availability in winter wheat. Appl. Environ. Soil Sci. 2011:1-9.
  7. Artursson, V., R.D. Finlay, and J.K. Jansson. 2006. Interactions between Arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ. Microbiol. 8:1-10. https://doi.org/10.1111/j.1462-2920.2005.00942.x
  8. Azaizeh, H.A., H. Marschner, V. Romheld, and L. Wittenmayer. 1995. Effects of a vesicular-arbuscular mycorrhizal fungus and other soil microorganisms on growth, mineral nutrient acquisition and root exudation of soil-grown maize plants. Mycorrhiza 5:321-327. https://doi.org/10.1007/BF00207404
  9. Bai, Y., X. Zhou, and D.L. Smith, 2003. Enhanced soybean plant growth resulting from coinoculation of Bacillus strains with Bradyrhizobium japonicum. Crop Sci. 43:1774-1781. https://doi.org/10.2135/cropsci2003.1774
  10. Barea, J.M., R. Azcon, and C. Azcon-Aguilar. 2002. Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343-351. https://doi.org/10.1023/A:1020588701325
  11. Barrios, E. 2007. Soil biota, ecosystem services and land productivity. Ecol. Econ. 64:269-285. https://doi.org/10.1016/j.ecolecon.2007.03.004
  12. Bashan, Y., G. Holguin, and L.E. de-Bashan. 2004. Azospirillum plant relationships: physiological, molecular, agricultural and environmental advances (1997-2003). Can. J. Microbiol. 50: 521-577. https://doi.org/10.1139/w04-035
  13. Bedini, S., E. Pellegrino, L. Avio, S. Pellegrini, P. Bazzoffi, E. Argese, and M. Giovannetti. 2009. Changes in soil aggregation and glomalin related soil protein content as affected by the Arbuscular mycorrhizal fungal species Glomus mosseae and Glomus intraradices. Soil Biol. Biochem. 41:1491-1496. https://doi.org/10.1016/j.soilbio.2009.04.005
  14. Behl, R.K., H. Sharma, V. Kumar, and N. Narula. 2003. Interaction among mycorrhiza, Azotobacter chroococcum and root characteristics of wheat varieties. J. Agron. Crop Sci. 189:151-155. https://doi.org/10.1046/j.1439-037X.2003.00026.x
  15. Behn, O. 2008. Influence of Pseudomonas fluorescens and arbuscular mycorrhiza on the growth, yield, quality and resistance of wheat infected with Gaeumannomyces graminis. J. Plant Dis. Protect. 115:4-8.
  16. Berta, G., S. Sampo, E. Gamalero, N. Massa, and P. Lamanceau. 2003. Glomus mosseae BEG12 and Pseudomonas fluorescens A6RI overcome growth depression and root morphologenetic modifications induced by Rhizoctonia solani in tomato plant. 6th International PGPR Workshop, Calcutta, India.
  17. Bianciotto, V., D. Minerdi, S. Perotto, and P. Bonfante. 1996a. Cellular interactions between arbuscular mycorrhizal fungi and rhizosphere bacteria. Protoplasma 193:123-131. https://doi.org/10.1007/BF01276640
  18. Bianciotto, V., C. Bandi, D. Minerdi, M. Sironi, H.V. Tichy, and P. Bonfante. 1996b. An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl. Environ. Microbiol. 62:3005-3010.
  19. Bianciotto, V., S. Andreotti, R. Balestrini, P. Bonfante, and S. Perotto. 2001. Extracellular polysaccharides are involved in the attachment of Azospirillum brasilense and Rhizobium leguminosarum to arbuscular mycorrhizal structures. Eur. J. Histochem. 45:39-49.
  20. Bisht, R., S. Chaturvedi, R.Srivastava, A.K. Sharma, and B.N. Johri. 2009. Effect of arbuscular mycorrhizal fungi, Pseudomonas fluorescens and Rhizobium leguminosarum on the growth and nutrient status of Dalbergia sissoo Roxb. Tropical Ecol. 50: 231-242.
  21. Bonfante, P., R. Balestrini, and K. Mendgen. 1994. Storage and secretion processes in the spore of Gigaspora margarita Becker and Hall as revealed by high-pressure freezing and freeze substitution. New Phytol. 128:93-101. https://doi.org/10.1111/j.1469-8137.1994.tb03991.x
  22. Budi, S.W., D. van Tuinen, G. Martinotti, and S. Gianinazzi. 1999. Isolation from the Sorghum bicolor mycorrhizosphere of a bacterium compatible with arbuscular mycorrhiza development and antagonistic towards soil borne fungal pathogens. Appl. Environ. Microbiol. 65:5148-5150.
  23. Carpenter, L., T.E. Loynachan, and P.D. Stahl. 1995. Spore germination of Gigaspora margarita stimulated by volatiles of soil-isolated actinomycetes. Soil Biol. Biochem. 27:1445-1451. https://doi.org/10.1016/0038-0717(95)00075-P
  24. Cattelan, A.J., P.G. Hartel, and J.J. Fuhrmann. 1999. Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci. Soc. Am. J. 63:1670-1680. https://doi.org/10.2136/sssaj1999.6361670x
  25. Constantino, M., R. Gomez-Alvarez, J.D. Alvarez-Sol, V. Geissen, E. Huerta, and E. Barba. 2008. Effect of inoculation with rhizobacteria and arbuscular mycorrhizal fungi on growth and yield of Capsicum chinense Jacquin. J. Agric. Rural Dev. Trop. Subtrop. 109:169-180.
  26. Demir, S. and A. Akkopru. 2005. Using of arbuscular mycorrhizal fungi (AMF) for biocontrol of soil-borne fungal plant pathogens. In S.B. Chincholkar and K.G. Mukerji (ed.) Biological control of plant diseases: Current concepts. Haworth Press, NY.
  27. Dobbelaere, S., J. Vanderleyden, and Y. Okon. 2003. Plant growth promoting effects of diazotrophs in the rhizosphere. Crit. Rev. Plant Sci. 22:107-149. https://doi.org/10.1080/713610853
  28. Dwivedi, D., B.N. Johri, K. Ineichen, V. Wray, and A. Wiemken. 2009. Impact of antifungals producing rhizobacteria on the performance of Vigna radiata in the presence of arbuscular mycorrhizal fungi. Mycorrhiza 19:559-570. https://doi.org/10.1007/s00572-009-0253-2
  29. Elshanshoury, A.R. 1995. Interactions of Azotobacter chroococcum, Azospirillum brasilense and Streptomyces mutabilis in relation to their effect on wheat development. J. Agron. Crop Sci. 175: 119-127. https://doi.org/10.1111/j.1439-037X.1995.tb01137.x
  30. Evelin, H., R. Kapoor, and B. Giri. 2009. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review. Ann. Bot. 104: 1263-1280. https://doi.org/10.1093/aob/mcp251
  31. Figueiredo, M.V.B., H.A. Burity, C.R. Martınez, and C.P. Chanway. 2008. Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. Appl. Soil Ecol. 40:182-188. https://doi.org/10.1016/j.apsoil.2008.04.005
  32. Frank, A.B. 1885. On the nutrient providing root-symbiosis between underground fungi and certain trees. Berichte der Deutschen botanischen Gesellschaft 5:395-409.
  33. Franzini, V., R. Azconn, F.L. Mendes, and R. Aroca. 2010. Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J. Plant Physiol. 167:614-619. https://doi.org/10.1016/j.jplph.2009.11.010
  34. Gamalero, E., G. Lingua, G. Berta, and B.R. Glick. 2009. Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can. J. Microbiol. 55:501-514. https://doi.org/10.1139/W09-010
  35. Gamalero, E., M.G. Martinotti, A. Trotta, P. Lemanceau, and G. Berta. 2004. Morphogenetic modifications induced by Pseudomonas fluorescens A6RI and Glomus mosseae BEG12 in the root system of tomato differ according to plant growth conditions. New Phytol. 155:293-300.
  36. Gamalero, E., G. Berta, N. Massa, B.R. Glick, and G. Lingua. 2008. Synergistic interactions between the ACC deaminaseproducing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol. Ecol. 64:459-467. https://doi.org/10.1111/j.1574-6941.2008.00485.x
  37. Garbaye, J. 1994. Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol. 128:197-210. https://doi.org/10.1111/j.1469-8137.1994.tb04003.x
  38. Glick, B.R. 2004. Bacterial ACC deaminase and the alleviation of plant stress. Adv. Appl. Microbiol. 56:291-312. https://doi.org/10.1016/S0065-2164(04)56009-4
  39. Glick, B.R., D.M. Penrose, and J. Li. 1998. A model for the lowering of plant ethylene concentrations by plant growthpromoting bacteria. J. Theor. Biol. 190:63-68. https://doi.org/10.1006/jtbi.1997.0532
  40. Hazarika, D.K. and A.K. Phookan. 2003. Combination of Glomus fasciculatum with Pseudomonas fluorescens and Trichoderma harzianum: Effect on biocontrol potential and growth promotion in tea seedling. p. 289-294. In Proceedings of 6th International PGPR Workshop, 5-10 October 2003, Calcutta, India.
  41. He, Z.L., X.E. Yang, and P.J. Stoffella. 2005. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 19:125-140. https://doi.org/10.1016/j.jtemb.2005.02.010
  42. Hedge, D.M., B.S. Dwived, and S.N. Sudhakara. 1999. Biofertilizers for cereal production in India - A review. Indian J. Agric. Sci. 69:73-83.
  43. Hernandez-Rodriguez, A., M, Heydrich-Perez, Y. Acebo-Guerrero, M.G. Velazquez-del Valle, and A.N. Hernandez-Lauzardo. 2008. Antagonistic activity of Cuban native rhizobacteria against Fusarium verticillioides (Sacc.) Nirenb in maize (Zea mays L.). Appl. Soil. Ecol. 36:184-186.
  44. Hildebrandt, U., K. Janetta, and H. Bothe. 2002. Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl. Environ. Microbiol. 68:1919-1924. https://doi.org/10.1128/AEM.68.4.1919-1924.2002
  45. Hildebrandt, U., F. Ouziad, F.J. Marner, and H. Bothe. 2006. The bacterium Paenibacillus validus stimulates growth of the arbuscular mycorrhizal fungus Glomus intraradices up to the formation of fertile spores. FEMS Microbiol. Lett. 254:258-267. https://doi.org/10.1111/j.1574-6968.2005.00027.x
  46. Hodge, A. 2000. Microbial ecology of the arbuscular mycorrhiza. FEMS Microbiol. Ecol. 32:91-96. https://doi.org/10.1111/j.1574-6941.2000.tb00702.x
  47. Idris, A., L. Labuschagne, and N. Korsten. 2009. Efficacy of rhizobacteria for growth promotion in sorghum under greenhouse conditions and selected modes of action studies. J. Agr. Sci. 147:17-30. https://doi.org/10.1017/S0021859608008174
  48. Jeffries, P., S. Gianinazzi, S. Peretto, K. Turnau, and J.M. Barea. 2003. The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol. Fertil. Soils 37:1-16.
  49. Johansson, J.F., L.R. Paul, and R.D. Finley. 2004. Microbial interactions in the mycorrhizosphere and their significance for sustainable agriculture. FEMS Microbiol. Ecol. 48:1-13. https://doi.org/10.1016/j.femsec.2003.11.012
  50. Jongdee, B., S. Fukai, and M. Cooper. 2002. Leaf water potential and osmotic adjustment as physiological traits to improve drought tolerance in rice. Field Crops Res. 76:153-63. https://doi.org/10.1016/S0378-4290(02)00036-9
  51. Karandashov, V. and M. Bucher. 2005. Symbiotic phosphate transport in arbuscular mycorrhizas. Trends Plant Sci. 10:22-29. https://doi.org/10.1016/j.tplants.2004.12.003
  52. Karlidag, H., A. Esitken, M. Turan, and F. Sahin. 2007. Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci. Hortic-Amsterdam 114:16-20. https://doi.org/10.1016/j.scienta.2007.04.013
  53. Kim, K., W.J. Yim, P. Trivedi, M. Madhaiyan, H.P. Deka Boruah, Md. Rashedul Islam, G. Lee, and T.M. Sa. 2010. Synergistic effects of inoculating arbuscular mycorrhizal fungi and Methylobacterium oryzae strains on growth and nutrient uptake of red pepper (Capsicum annuum L.). Plant Soil 327:429-440. https://doi.org/10.1007/s11104-009-0072-4
  54. Kloepper, J.W., R. Lifshitz, and R.M. Zablotowicz. 1989. Freeliving bacterial inocula for enhancing crop productivity. Trends Biotechnol. 7:39-43. https://doi.org/10.1016/0167-7799(89)90057-7
  55. Kohler, J., F. Caravaca, and A. Roldan. 2010. An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol. Biochem. 42:429-434. https://doi.org/10.1016/j.soilbio.2009.11.021
  56. Kohler, J., F. Caravaca, L. Carrasco, and A. Roldan. 2006. Contribution of Pseudomonas mendocina and Glomus intraradices to aggregate stabilization and promotion of biological fertility in rhizosphere soil of lettuce plants under field conditions. Soil Use Manage. 22:298-304. https://doi.org/10.1111/j.1475-2743.2006.00041.x
  57. Kohler, J., F. Caravaca, L. Carrasco, and A. Roldan. 2007. Interactions between a plant growth-promoting rhizobacterium, an AM fungus and a phosphate-solubilising fungus in the rhizosphere of Lactuca sativa. Appl. Soil Ecol. 35:480-487. https://doi.org/10.1016/j.apsoil.2006.10.006
  58. Lee, J. and C.F. Scagel. 2009. Chicoric acid found in basil (Ocinum basilicum L.) leaves. Food Chem. 115:650-656. https://doi.org/10.1016/j.foodchem.2008.12.075
  59. Linderman, R.G. 1988. Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathol. 78:366-371.
  60. Linderman, R.G. 1994. Role of VAM fungi in biocontrol. p. 1-26. In G.J. Bethlenfalvay and R.G. Linderman (ed.) Mycorrhizae and plant health. APS Press, St Paul, Minnesota.
  61. Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J.P. Grime, A. Hector, D.U. Hooper, M.A. Huston, D. Raffaelli, B. Schmid, D. Tilman, and D.A. Wardle. 2001. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294:804-808. https://doi.org/10.1126/science.1064088
  62. Ludwig-Muller, J. and M. Guther. 2007. Auxins as signals in arbuscular mycorrhiza formation. Plant Signal Behav. 2:194-196. https://doi.org/10.4161/psb.2.3.4152
  63. Madhaiyan, M., S. Poonguzhali, J.H. Ryu, and T.M. Sa. 2006. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase containing Methylobacterium fujisawaense. Planta 224:268-278. https://doi.org/10.1007/s00425-005-0211-y
  64. Madhaiyan, M., S. Poonguzhali, and T.M. Sa. 2007. Characterization of 1-aminocyclopropane-1-carboxylate (ACC) deaminase containing Methylobacterium spp. and interactions with auxins and ACC regulation of ethylene in canola. Planta 226:867-876. https://doi.org/10.1007/s00425-007-0532-0
  65. Madhaiyan, M., S. Poonguzhali, B.G. Kang, Y.J. Lee, J. B. Chung, and T.M. Sa. 2010. Effect of co-inoculation of methylotrophic Methylobacterium oryzae with Azospirillum brasilense and Burkholderia pyrrocinia on the growth and nutrient uptake of tomato, red pepper and rice. Plant Soil 328:71-82. https://doi.org/10.1007/s11104-009-0083-1
  66. Marschner, P. and S. Timonen, 2005. Interactions between plant species and mycorrhizal colonization on the bacterial community composition in the rhizosphere. Appl. Soil Ecol. 28:23-36. https://doi.org/10.1016/j.apsoil.2004.06.007
  67. Marulanda, A., J.M. Barea, and R. Azcon. 2006. An indigenous drought tolerant strain of Glomus intraradices associated with a native bacterium improves water transport and root development in Retama sphaerocarpa. Microb. Ecol. 52:670-678. https://doi.org/10.1007/s00248-006-9078-0
  68. Marulanda, A., J.M. Barea, and R. Azcon. 2009. Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments mechanisms related to bacterial effectiveness. J. Plant Growth Regul. 28: 115-24. https://doi.org/10.1007/s00344-009-9079-6
  69. Marulanda A., R. Azcon, J.M. Ruiz-Lozano, and R. Aroca. 2008. Differential effects of a Bacillus megaterium strain on Lactuca sativa plant growth depending on the origin of the arbuscular mycorrhizal fungus coinoculated: physiologic and biochemical traits. J. Plant Growth Regul. 27:10-18. https://doi.org/10.1007/s00344-007-9024-5
  70. Mayo, K., R.E. Davis, and J. Motta. 1986. Stimulation of germination of spores of Glomus versiforme by spore associated bacteria. Mycologia 78:426-431. https://doi.org/10.2307/3793046
  71. Meixner, C., J. Ludwig-Muller, O. Miersch, P. Gresshoff, C. Staehelin, and H. Vierheilig. 2005. Lack of mycorrhizal auto regulation and phytohormonal changes in the super nodulating soybean mutant nts1007. Planta 222:709-715. https://doi.org/10.1007/s00425-005-0003-4
  72. Minerdi, D., R. Fani, R. Gallo, A. Boarino, and P. Bonfante. 2001. Nitrogen fixation genes in an endosymbiotic Burkholderia strain. Appl. Environ. Microbiol. 67:725-732. https://doi.org/10.1128/AEM.67.2.725-732.2001
  73. Mirzakhani, M., M.R. Ardakani, A. Aeene Band, F. Rejali, and A.H. Shirani rad. 2009. Response of spring safflower to coinoculation with Azotobacter chroococum and Glomus intraradices under different levels of nitrogen and phosphorus. Am. J. Agric. Biol. Sci. 4:255-261. https://doi.org/10.3844/ajabssp.2009.255.261
  74. Morgenstern, E. and Y. Okon. 1987. The effect of Azospirillum brasilense and auxin on root morphology in seedlings of Sorghum bicolour x Sorghum sudanense. Arid Soil Res. Rehabil. 1:115-127. https://doi.org/10.1080/15324988709381135
  75. Mosse, B. 1970. Honey-coloured, sessile endogone spores. II. Changes in fine structure during spore development. Arch. Microbiol. 74:129-145.
  76. Murty, M.G. and J.K. Ladha, 1988. Influence of Azospirillum inoculation on the mineral uptake and growth of rice under hydroponic conditions. Plant Soil 108:281-285. https://doi.org/10.1007/BF02375660
  77. Ophir, T. and D.L. Gutnick. 1994. A role of exopolysaccharides in the protection of microorganisms from desiccation. Appl. Environ. Microbiol. 60:740-745.
  78. Ordookhani, K. and M. Zare. 2011. Effect of Pseudomonas, Azotobacter and arbuscular mycorrhiza fungi on lycopene, antioxidant activity and total soluble solid in tomato (Lycopersicon Esculentum F1 Hybrid, Delba). Adv. Environ. Biol. 5:1290-1294.
  79. Ordookhani, K., K. Khavazi, A. Moezzi, and F. Rejali. 2010. Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. African J. Agric. Res. 5: 1108-1116.
  80. Orhan, E., A. Esitken, S. Ercisli, M. Turan, and F. Sahin. 2006. Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci. Hortic-Amsterdam. 111:38-43. https://doi.org/10.1016/j.scienta.2006.09.002
  81. Poonguzhali, S., M. Madhaiyan, and T.M. Sa. 2008. Isolation and identification of phosphate solubilizing bacteria from Chinese cabbage and their effect on growth and phosphorus utilization of plants. J. Microbiol. Biotechnol. 18:773-777.
  82. Porras-Soriano, A., M.L. Soriano-Martin, A. Porras-Piedra, and R. Azcon. 2009. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J. Plant Physiol. 166:1350-1359. https://doi.org/10.1016/j.jplph.2009.02.010
  83. Puppi, G., R. Azcon, and G. Hoflich. 1994. Management of positive interactions of arbuscular mycorrhizal fungi with essential groups of soil microorganisms. p. 201-215. In S. Gianinazzi, and H. Schuepp (ed.) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhauser Verlag, Basel, Switzerland.
  84. Rambelli, A. 1973. The rhizosphere of mycorrhizae. p. 299-343. In G.L. Marks, and T.T. Koslowski (ed.) Ectomycorrhizae. Academic Press, New York.
  85. Ravnskov, S. and I. Jakobsen. 1999. Effects of Pseudomonas fluorescens DF57 on growth and P uptake of two arbuscular mycorrhizal fungi in symbiosis with cucumber. Mycorrhiza 8:329-334. https://doi.org/10.1007/s005720050254
  86. Robertson, G.P. and S.M. Swinton. 2005. Reconciling agricultural productivity and environmental integrity: a grand challenge for agriculture. Front. Ecol. Environ. 3:39-46.
  87. Rodriguez, H., R. Fraga, T. Gonzalez, and Y. Bashan. 2006. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15-21. https://doi.org/10.1007/s11104-006-9056-9
  88. Roesti, D., R. Gaur, B.N. Johri, G. Imfeld, S. Sharma, K. Kawaljeet, and M. Aragno. 2006. Plant growth stage, fertilizer management and bio-inoculation of arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterial community structure in rain-fed wheat fields. Soil Biol. Biochem. 38:1111-1120. https://doi.org/10.1016/j.soilbio.2005.09.010
  89. Ruiz-Sancheza, M., E. Armadab, Y. Munoza, I.E. Garcia de Salamonec, R. Arocab, J.M. Ruiz-Lozanob, and R. Azcon. 2011. Azospirillum and arbuscular mycorrhizal colonization enhance rice growth and physiological traits under wellwatered and drought conditions. J. Plant Physiol. 168:1031-1037. https://doi.org/10.1016/j.jplph.2010.12.019
  90. Ryu, J.H., M. Madhaiyan, S. Poonguzhali, W.J. Yim, P. Indiragandhi, K.A. Kim, R. Anandham, J.C. Yun, and T.M. Sa. 2006. Plant growth substances produced by Methylobacterium spp. and their effect on the growth of tomato (Lycopersicon esculentum L.) and red pepper (Capsicum annuum L.). J. Microbiol. Biotechnol. 16:1622-1628.
  91. Sabannavar, S.J. and H.C. Lakshman. 2009. Effect of rock phosphate solubilization using mycorrhizal fungi and phosphobacteria on two high yielding varieties of Sesamum indicum L. World J. Agric. Sci. 5:470-479.
  92. Sanchez, L., S. Weidmann, L. Brechenmacher, M. Batoux, D. van Tuinen, P. Lemanceau, S. Gianniazzi, and V. Gianinazzi- Pearson. 2004. Common gene expression in Medicago truncatula roots in response to Pseudomonas fluorescens colonization, mycorrhiza development and nodulation. New Phytol. 161:855-863. https://doi.org/10.1046/j.1469-8137.2004.00997.x
  93. Santos, J.C., R.D. Finlay, and A. Tehler. 2006. Molecular analysis of arbuscular mycorrhizal fungi colonizing a semi-natural grassland along a fertilization gradient. New Phytol. 172:159-168. https://doi.org/10.1111/j.1469-8137.2006.01799.x
  94. Sarig, S., A. Blumand, and Y. Okon. 1988. Improvement of the water status and yield of field-grown grain Sorghum (Sorghum bicolor) by inoculation with Azospirillum brasilense. J. Agri. Sci. 110:271-277. https://doi.org/10.1017/S0021859600081296
  95. Sarig, S., Y. Okon, and A. Blum. 1992. Effect of Azospirillum brasilense inoculation on growth dynamics and hydraulic conductivity of Sorghum bicolor roots. J. Plant Nutr. 15:805-819. https://doi.org/10.1080/01904169209364364
  96. Sayeed, A.M.S. and Z.A. Siddiqui. 2008. Biocontrol of a root-rot disease complex of chickpea by Glomus intraradices, Rhizobium sp. and Pseudomonas straita. Crop Prot. 27:410-417. https://doi.org/10.1016/j.cropro.2007.07.009
  97. Silva, V.N., L.E.S.F. Silva, and M.V.B. Figueiredo. 2006. Atuac aoderizobios com rizobacte 'rias promotoras de crescimento em plantas na cultura do caupi (Vigna unguiculata L. Walp). Acta. Sci Agron. 28:407-412.
  98. Smith, S.E. and D.J. Read. 1997. Mycorrhizal symbiosis. Academic Press, San Diego, CA.
  99. Souchie, E.L., R. Azcon, J.M. Barea, O.J. Saggin-Junior, and E.M. Ribeiro da Silva. 2003. Indolacetic acid production by P-solubilizing microorganisms and interaction with arbuscular mycorrhizal fungi. Acta Sci. Biol. Sci. 29:315-320.
  100. Tian, C., X. He, Y. Zhong, and J. Chen. 2003. Effect of inoculation with ecto- and arbuscular mycorrhizae and Rhizobium on the growth and nitrogen fixation by black locust, Robinia pseudoacacia. New Forest. 25:125-131. https://doi.org/10.1023/A:1022675915627
  101. Tilman, D., K.G. Cassman, P.A. Matson, R. Naylor, and S. Polasky. 2002. Agricultural sustainability and intensive production practices. Nature 418:671-677. https://doi.org/10.1038/nature01014
  102. Tilman, D., J. Fargione, B. Wolff, C. D'Antonio, A. Dobson, R. Howarth, D. Schindler, W.H. Schlesinger, D. Simberloff, and D. Swackhamer. 2001. Forecasting agriculturally driven global environmental change. Science 292:281-284. https://doi.org/10.1126/science.1057544
  103. Toro, M., R. Azcon, and J.M. Barea. 1997. Improvement of arbuscular mycorrhiza development by inoculation of soil with phosphate-solubilizing rhizobacteria to improve rock phosphate bioavailability ($^{32}P$) and nutrient cycling. Appl. Environ. Microbiol. 63:4408-4412.
  104. Toro, M., R. Azcon, and J.M. Barea. 1998. The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol. 138:265-273. https://doi.org/10.1046/j.1469-8137.1998.00108.x
  105. Utkhede, R. 2006. Increased growth and yield of hydroponically grown greenhouse tomato plants inoculated with arbuscular mycorrhizal fungi and Fusarium oxysporum f. sp. radicislycopersici. Biocontrol. 51:393-400. https://doi.org/10.1007/s10526-005-4243-9
  106. Vessey, J.K. 2003. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571-586. https://doi.org/10.1023/A:1026037216893
  107. Vivas, A., R. Azcon, B. Biro, J.M. Barea, and J.M. Ruiz- Lozano. 2003. Influence of bacterial strains isolated from lead-polluted soil and their interactions with Arbuscular mycorrhizae on the growth of Trifolium pratense L. under lead toxicity. Can. J. Microbiol. 49:577-588. https://doi.org/10.1139/w03-073
  108. Vivas, A., B. Biro, T. Nemeth, J.M. Barea, and R. Azcona. 2006a. Nickel-tolerant Brevibacillus brevis and arbuscular mycorrhizal fungus can reduce metal acquisition and nickel toxicity effects in plant growing in nickel supplemented soil. Soil Biol. Biochem. 38:2694-2704. https://doi.org/10.1016/j.soilbio.2006.04.020
  109. Vivas, A., B. Biro, J.M. Ruız-Lozano, J.M. Barea, and R. Azcon. 2006b. Two bacterial strains isolated from a Zn-polluted soil enhance plant growth and mycorrhizal efficiency under Zn-toxicity. Chemosphere 62:1523-1533. https://doi.org/10.1016/j.chemosphere.2005.06.053
  110. Vosatka, M. and M. Gryndler. 1999. Treatment with culture fractions from Pseudomonas putida modifies the development of Glomus fistulosum mycorrhiza and the response of potato and maize plants to inoculation. Appl. Soil Ecol. 11:245-251. https://doi.org/10.1016/S0929-1393(98)00151-6
  111. Walley, F.L. and J.J. Germida. 1996. Failure to decontaminate Glomus clarum NT4 spores is due to spore wall-associated bacteria. Mycorrhiza 6:43-49.
  112. Wang, X., Q. Pan, F. Chen, X. Yan, and H. Liao. 2011. Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173-181. https://doi.org/10.1007/s00572-010-0319-1
  113. Wright, S.F. and R.L. Anderson. 2000. Aggregate stability and glomalin in alternative crop rotations for the Central Great Plains. Biol. Fert. Soils 31:249-253. https://doi.org/10.1007/s003740050653
  114. Wu, S.C., Z.H. Caob, Z.G. Lib, K.C. Cheunga, and M.H. Wonga. 2005. Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155-166. https://doi.org/10.1016/j.geoderma.2004.07.003
  115. Xavier, L.J.C. and J.J. Germida. 2003. Bacteria associated with Glomus clarum spores influence mycorrhizal activity. Soil Biol. Biochem. 35:471-478. https://doi.org/10.1016/S0038-0717(03)00003-8
  116. Yao, T., S. Yasmin, and F.Y. Hafeez. 2008. Potential role of rhizobacteria isolated from Northwestern China for enhancing wheat and oat yield. J. Agric. Sci. 146:49-56.
  117. Yim, W.J., S. Poonguzhali, M. Madhiyan, P. Palaniappan, M.A. Siddikee, and T.M. Sa. 2009. Characterization of plant growth promoting diazotrophic bacteria isolated from field grown chinese cabbage under different fertilization conditions. J. Microbiol. 47:147-155. https://doi.org/10.1007/s12275-008-0201-4
  118. Yusran, R.V. and M. Torsten. 2009. Effects of Pseudomonas sp. "Proradix" and Bacillus amyloliquefaciens FZB42 on the establishment of AMF infection, nutrient acquisition and growth of tomato affected by Fusarium oxysporum Schlecht f. sp. radicis-lycopersici jarvis and shoemaker. Proceedings of the International Plant Nutrition Colloquium XVI. Department of Plant Sciences, UC Davis, Davis, California.

피인용 문헌

  1. Repeated annual glyphosate applications may impair beneficial soil microorganisms in temperate grassland vol.230, 2016, https://doi.org/10.1016/j.agee.2016.06.011
  2. Soil temperature modifies effects of soil biota on plant growth 2016, https://doi.org/10.1093/jpe/rtw097
  3. Inoculation with selected microbial consortia not only enhances growth and yield of French bean but also reduces fertilizer application under field condition vol.197, 2015, https://doi.org/10.1016/j.scienta.2015.10.001
  4. Beneficial microorganisms for soybean (Glycine max (L.) Merr), with a focus on low root-zone temperatures vol.397, pp.1-2, 2015, https://doi.org/10.1007/s11104-015-2546-x