저장기간 및 저장온도에 따른 미생물농약 및 친환경 유기농자재 유효미생물의 밀도변동

Population Dynamics of Effective Microorganisms in Microbial Pesticides and Environmental-friendly Organic Materials According to Storing Period and Temperature

  • 김용기 (국립농업과학원 농산물안정성부 유기농업과) ;
  • 홍성준 (국립농업과학원 농산물안정성부 유기농업과) ;
  • 지형진 (국립농업과학원 농산물안정성부 유기농업과) ;
  • 심창기 (국립농업과학원 농산물안정성부 유기농업과) ;
  • 박종호 (국립농업과학원 농산물안정성부 유기농업과) ;
  • 한은정 (국립농업과학원 농산물안정성부 유기농업과) ;
  • 안난희 (국립농업과학원 농산물안정성부 유기농업과) ;
  • 이승돈 (농촌진흥청 연구정책국 연구운영과) ;
  • 유재홍 (국립농업과학원 농업생물부 농업미생물팀)
  • Kim, Yong-Ki (Organic Agriculture Div., Department of Agro-Food Safety, NAAS, RDA) ;
  • Hong, Sung-Jun (Organic Agriculture Div., Department of Agro-Food Safety, NAAS, RDA) ;
  • Jee, Hyung-Jin (Organic Agriculture Div., Department of Agro-Food Safety, NAAS, RDA) ;
  • Shim, Chang-Kee (Organic Agriculture Div., Department of Agro-Food Safety, NAAS, RDA) ;
  • Park, Jong-Ho (Organic Agriculture Div., Department of Agro-Food Safety, NAAS, RDA) ;
  • Han, Eun-Jung (Organic Agriculture Div., Department of Agro-Food Safety, NAAS, RDA) ;
  • An, Nan-Hee (Organic Agriculture Div., Department of Agro-Food Safety, NAAS, RDA) ;
  • Lee, Seong-Don (Research Coordination Division, Research Policy Bureau, RDA) ;
  • Yoo, Jae-Hong (Agricultural Microbiology Team, Department of Agricultural Biology, NAAS, RDA)
  • 투고 : 2011.02.09
  • 심사 : 2011.02.28
  • 발행 : 2011.03.31

초록

친환경농자재의 품질관리와 관련하여 친환경 실천 농가를 대상으로 친환경농자재 선택사유, 사용방법, 선택기준, 선호 제형을 조사한 결과, 선택사유는 토양개량>병해충방제>생육촉진 순으로 나타났고, 사용방법은 구입즉시 사용하는 농가는 22.7%인 반면 보관하면서 사용하는 농가가 77.3%이었다. 시판 유통 중인 친환경제제 17종을 구입하여 구입 즉시 제제 중 미생물 농도를 조사한 결과, 친환경유가농자재(미생물제제, 토양미생물제, 친환경유기농자재) 2종은 보증 미생물 밀도가 기준치 이하로 품절 관리측면에서 문제가 있는 것으로 나타난 반면, 미생물농약으로 등록되어 사용되는 제품 중 미생물 밀도는 비교적 안정적이었다. 시판 유통 중인 친환경제제 17종을 6개월간 온도별로 저장하면서 제제 중 보증 미생물 농도를 조사한 결과, $4^{\circ}C$에 저장할 때에는 미생물농약은 1종의 액상제형 미생물제만이 기준치 이하였으며, 친환경유기농자내 8종 중 4종이 기준치 이하였다. 온도의 변화가 큰 실온에 저장할 때에는 전환경농자재는 7종 중 5종이, 미생물농약은 9종 중 4종이 기준치 이하로 나타나 $4^{\circ}C$$25^{\circ}C$의 정온 조건에 보관할 때보다는 온도가 변화되는 조건에 저장할 때 영향을 크게 받는 것으로 나타났다. 결론적으로 미생물제제의 저장온도에 따른 미생물의 변화는 저온($5^{\circ}C$) > $25^{\circ}C$(정온) > 변온(실온) 순으로 안정적이었으며, 제형에 따른 저장성은 입제 > 액상수화제 > 액상제 순으로 우수하였다.

To work out quality control methods of environmental-friendly organic materials (EFOMs), the reason and basis for EFOM-selection and farmer's favorite formulation type of EFOMs, etc were investigated on farmers who had been practicing environmental-friendly agriculture. EFOMs used were soil amendments, control agents of plant diseases and insect pests, plant growth promotion formulations, in turns. In EFOMs application time, 22.7% of farmers sprayed EFOMs without delay after they were bought, in other hand, 77.3% of farmers used EFOMs which had been bought and stored for some period. Microbial density on seventeen environmental-friendly microbial formulates (EFMFs) including microbial pesticides, a microbial fertilizer, and environmental-friendly organic materials was investigated at different storing temperature and shelf life. When the microbial density of EFMFs was investigated without delay after they were bought, all used microbial pesticides and a microbial fertilizer was confirmed to be optimal for the certified density but two of environmental-friendly organic materials was confirmed not to be optimal. When microbial density of 17 EFMFs were investigated after storing them for six months at $4^{\circ}C$, only one of 9 microbial pesticides was confirmed not to be optimal, the other hand four of seven environmental-friendly organic materials not to be optimal, which each of their microbial density was less than the certified density. Population dynamics of microbial agents was much more influenced in fluctuated temperature (room temperature) than in static temperature condition ($5^{\circ}C$ and $25^{\circ}C$). Shelf life of microbial agents according to microbial formulation type were high in granule type, liquid wettable type and liquid type in turns.

키워드

참고문헌

  1. Acea, M. J. and M. Alexander (1988) Growth and survival of bacteria introduced into carbon-amended soil. Soil Biol. Biochem. 20:703-709. https://doi.org/10.1016/0038-0717(88)90155-1
  2. Andersson, S. and I. Nilsson (2001) Influence of pH and tem-perature on microbial activity, substrate availability of soil-solution bacteria and leaching of dissolved organic carbon in a mor humus. Soil Biol. and Biochem. 33:1181-1191. https://doi.org/10.1016/S0038-0717(01)00022-0
  3. Cassidy, M. B., H. Lee and J. T. Trevors (1997) Survival and activity of lac-lux marked Pseudomonas aeruginosa UG2Lr cells encapsulated in k-carrageenam over four years at 4${^{\circ}C}$. Journal of Microbiological Methods 30:167-170. https://doi.org/10.1016/S0167-7012(97)00059-6
  4. Chen, M. and M. Alexander (1973) Survival of soil bacteria during prolonged desiccation. Soil Biol. Biochem. 5:213-221. https://doi.org/10.1016/0038-0717(73)90004-7
  5. Christ, M. J. and M. B. David (1996) Temperature and moisture effects on the production of dissolved organic carbon in a spodosol. Soil Biol. Biochem. 28(9):1191-1996. https://doi.org/10.1016/0038-0717(96)00120-4
  6. Dandurand, L. M., M. J. Morra, M. H. Chavcrra and C. S. Orser (1994) Survival of Pseudomonas spp. in air-dried mineral powders. Soil Biol. Biochem. 26:1423-1430. https://doi.org/10.1016/0038-0717(94)90227-5
  7. Fravel, D. R., J. J. Marois, R. D. Lumsden, and W. J. Connick (1985) Encapsulation of potential agents in an alginate-clay matrix. Phytopathology 75:774-777. https://doi.org/10.1094/Phyto-75-774
  8. Heijnen, C. E., C. H. Hok-A-Hin and J. A. Van Veen (1992) Improvements to the use of bentonite clay as a protective agent, increasing survival levels of bacteria introduced into soil. Soil Biol. Biochem. 24(6):533-538. https://doi.org/10.1016/0038-0717(92)90077-B
  9. Macguire. M. R. and B. S. Shasha (1995) Starch encapsulation of microbial pesticides. Biorational Pest Control Agents 17:229-237.
  10. Mawdsley, J. L. and R. G. Burns (1994) Factors affecting the survival of a Flavobacterium species in non-planted and rhizosphere soil. Soil Biol. Biochem. 26:849-859. https://doi.org/10.1016/0038-0717(94)90301-8
  11. Proom, H. and B. C. J. G. (1955) The minimal nutritional requirements of some species in the Genus Bacillus. J. Gen. Microbiol. 13:474-480. https://doi.org/10.1099/00221287-13-3-474
  12. Robert, B., B. Compton, K, James, S. I. David (2011) Production, stabilization, and formulation of microbial agents and natural products. USDA-ARS Crop Bioprotection Research.
  13. Seong, K. Y., M. Hofte, J. Boelens and W. Verstraete (1991) Growth, survival, and root colonization of plant growth beneficial Pseudomonas fluorescens ANP15 and Pseudomonas aeruginosa 7NSK2 at different temperatures. Soil Biol. Biochem. 23:423-428. https://doi.org/10.1016/0038-0717(91)90004-4
  14. Vandenhove, H., R. Merckx, H. Wilmots and K. Vlassak (1991) Survival of Pseudomonas fluorescens inocula of different physiological stages in soil. Soil Biol. Biochem. 23(12): 1133-1142. https://doi.org/10.1016/0038-0717(91)90025-F
  15. West, A. W., H. D. Burges and T. J. Dixon (1985) Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil: effect of pH, moisture, nutrient availability and indigenous microorganisms. Soil Biol. Biochem. 17:657-665. https://doi.org/10.1016/0038-0717(85)90043-4
  16. Yamada, M. and M. Ogiso (1997) Study on the available substrates for antagonistic bacterial strains to control Fusarium wilt of tomato. in: Control of soil-borne diseases using antagonistic microorganisms. pp. 142-144.
  17. 佐藤昭二, 藤正夫, 土居養二 (1991) 植物病理學實驗法 230p. 講談社. 東京.
  18. 火田中孝晴(1987) 微生物の長期保存法. 183p. 株式會社ェリ―ト 印刷. 日本ツクバ.