Investigation of Nonylphenols Contamination in Solvents and Solid-phase Extraction Cartridge, and its Removal Protocols

정밀분석용 용매 및 SPE의 Nonylphenols 오염평가 및 제거

  • Park, Jong-Min (Division of Chemical Safety, National Academy of Agricultural Science, RDA) ;
  • Choi, Geun-Hyonng (Division of Chemical Safety, National Academy of Agricultural Science, RDA) ;
  • Kim, Jung-Im (Division of Chemical Safety, National Academy of Agricultural Science, RDA) ;
  • Hong, Su-Myeong (Division of Chemical Safety, National Academy of Agricultural Science, RDA) ;
  • Kwon, Oh-Kyung (Division of Chemical Safety, National Academy of Agricultural Science, RDA) ;
  • Im, Geon-Jae (Division of Chemical Safety, National Academy of Agricultural Science, RDA) ;
  • Kim, Jin-Hyo (Division of Chemical Safety, National Academy of Agricultural Science, RDA)
  • 박종민 (농촌진흥청 국립농업과학원 유해화학과) ;
  • 최근형 (농촌진흥청 국립농업과학원 유해화학과) ;
  • 김정임 (농촌진흥청 국립농업과학원 유해화학과) ;
  • 홍수명 (농촌진흥청 국립농업과학원 유해화학과) ;
  • 권오경 (농촌진흥청 국립농업과학원 유해화학과) ;
  • 임건재 (농촌진흥청 국립농업과학원 유해화학과) ;
  • 김진효 (농촌진흥청 국립농업과학원 유해화학과)
  • Received : 2011.02.17
  • Accepted : 2011.03.16
  • Published : 2011.03.31

Abstract

Nonylphenols are toxic compounds classified as endocrine disruptors. We investigated the nonylphenols clean-up procedures for the contamination control in the quantitative analysis. In this research we analyzed the residual nonylphenols in the solvent and the SPE cartridges. First, at the analysis of HPLC grade solvents (n-hexane, diethyl ether, ethyl acetate and its mixture), diethyl ether was confirmed the residue as 0.963 ${\mu}g/mL$, and we eliminated the contaminant through the distillation with $CaH_2$, Second, at the analysis of SPE cartridges (silica gel and Florisil), all products were showed the residue at 0.046~13.0 ${\mu}g/mL$, but unfortunately the residue in the cartridge were not easily removed with referenced methods in all tested SPE cartridges except in silica gel SPE cartridge with glass ware.

계면활성제인 4-alkylphenol polyethoxylate는 한국 등 여러 국가에서 매우 광범위하계 사용되어 왔으나 이들 화합물 및 분해산물이 최근 내분비계에 장애를 일으키는 환경호르몬 물질로 분류됨에 따라 농약 등의 첨가물로 사용가능한 nonylphenols(NPs)에 대한 잔류 연구가 매우 활발하게 진행되고 있다. 본 연구에서는 극미량 정밀 잔류분석기술이 필요한 nonylphenols에 대하여 분석용매 몇 정제용 카트리지 선정에 필요한 전처리기술에 대해 보고하고자 한다. 분석 결과에 따르면, HPLC등급의 용매이라 할지라도 $Et_2O$의 경우 100배 농축 용매에서 NPs가 검출되어 시료 분석 시 방해요인으로 작용하였으며, 이의 제거를 위해 $CaH_2$를 사용한 증류 후 사용법을 개발하였다. 또한, 시료정제용 카트리지는 silica gel 및 Florisil 제품군, 그리고 glass ware과 plastic ware로 나누어 카트리지 내 nonylphenols 잔류량을 분석한 결과 silica gel 제품군 glass ware 제품이 전처리 정제용으로 적합한 것으로 확인되었다.

Keywords

References

  1. 국립환경연구원 (1999), 내분비계장애물질의 이해와 대응.
  2. 이창주, 윤용달 (2002), 내분비계장애물질이 생식과 발생에 미치는 영향, 한국발생생물학회지, 4(2):3-11.
  3. 홍종기, 김협, 백인걸, 김도균, 서정주, 서종복, 정봉철, 표희수, 김경례, 김용화 (2000), 기체 크로마토그래피/질량분석기를 이용한 생물시료 중 알킬 페놀류, 클로로페놀류 및 비스페놀 A의 분석법, Analytical Science and Technology, 13(4):484-493.
  4. 환경부 (2005), 제6차년도 내분비계장애물질 조사연구사업 결과 보고.
  5. 환경부 (2007), 환경백서, p.627.
  6. Ahel M, Giger W., and Koch M. (1994) Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment-1. Occurrence and transformation in sewage treatment, Water Research, 28:1131-1142. https://doi.org/10.1016/0043-1354(94)90200-3
  7. Clark L. B., Rosen R. T., Hartman T. G., Louis J. B., Suffet I. H., Lippincott R. L., and Rosen J. D. (1992), Determination of alkylphenol ethoxylates and their acetic acid derivatives in drinking water by particle beam liquid chromatography mass spectrometry, Intern. J. Environ. Anal. Chem., 47:167-180. https://doi.org/10.1080/03067319208027027
  8. Clark L.B., Rosen R.T, Hartman T.G., Louis J.B. and Rosen J.D. (1991), Determination of nonregulated pollutants in three New Jersey publicly owned treatment works., Res. J. WPCF, 63:104-113.
  9. Gibson R., Duran-Alvarez J. C., Estrada K. L., Chaves A., Cisneros B. J. (2010), Accumulation and leaching potential of some pharmaceuticals and potential endocrine disruptors in soils irrigated with wastewater in the Tula Valley, Mexico., Chemosphere, 81(11):1437-1445. https://doi.org/10.1016/j.chemosphere.2010.09.006
  10. Gonzalez S., Petrovic M., and Barcelo D. (2004), Simultaneous extraction and fate of linear alkylbenzene sulfonates, coconut diethanol amides, nonylphenol ethoxylates and their degradation products in wastewater treatment plants, receiving coastal waters and sediments in the Catalonian area (NE Spain)., J. Chromatogr. A., 1052: 111-120. https://doi.org/10.1016/j.chroma.2004.08.047
  11. Heberer T., and Stan H. J. (1997), Detection of more than 50 substituted phenols as their t-butyldimethylsilyl derivatives using gas chromatography mass spectrometry., Anal. Chim. Acta., 341:21-34. https://doi.org/10.1016/S0003-2670(96)00557-0
  12. Herterich R. (1991), Gas chromatographic determination of nitro-phenols in atmospheric liquid water and airborne particles., J. Chromatogr., 549:313-324. https://doi.org/10.1016/S0021-9673(00)91442-0
  13. Kahl M.D., Makynen E.A., Kosian P.A. and Ankley G.T. (1997), Toxicity of 4-nonylphenol in a life-cycle test with the midge Chironomus tentans., Ecotoxicol Environ Safe, 38:155-160. https://doi.org/10.1006/eesa.1997.1572
  14. Khim. J.S., Villeneuve D.L., Kannan K., Lee K.T., Snyder S.A., Koh C.H. and Giesy J.P., (1999), Charactrization and dis-tribution of trace organic contaminants in sediment from Masan Bay, Korea. 1. Instrumental Analysis., Environmental Science and Techology, 33:4199-4205. https://doi.org/10.1021/es9904484
  15. Kim Y. S., Katase T., Horii Y., Yamashita N., Makino M., Uchiyama T., Fujimoto Y., and Inoue T. (2005), Estrogen equivalent concentration of individual isomer-specific 4-nonyl-phenol in Ariake sea water, Japan., Marine Pollution Bulletin, 51:850-856. https://doi.org/10.1016/j.marpolbul.2005.07.014
  16. Lian J., Liu J. X. and Wei Y. S. (2009), Fate of nonylphenol polyethoxylates and their metabolites in four Beijing waste-water treatment plants., Science of the Total Environmental., 407:4261-4268. https://doi.org/10.1016/j.scitotenv.2009.03.022
  17. Lye C. M., Frid C. L. J., Gill M. E., Cooper D. W. and Jones D. M. (1999), Estrogenic alkylphenols in fish tissues, sediment and waters from the U.K. Tyne and Tees estuaries., Environ-mental Science and Technology, 33:1009-1014. https://doi.org/10.1021/es980782k
  18. Sumpter J. P. (1998), Xenoendocrine disruptors-environmental impacts., Toxicol. Lett., 103:337-342.
  19. Tolls J, Kloeppersams P, Sijm D., (1994), Surfactant bioconcentration-A critical review., Chemosphere, 29:693-719. https://doi.org/10.1016/0045-6535(94)90040-X
  20. U.S. EPA. (1997), Special report on Environmental Endocrine Disruption: An Effects Assessment and Analysis. Office of Research and Development, EPA/630/R-96/012, Washington D.C.
  21. U.S. EPA. (2001), Removal of endocrine disruptor chemicals using drinking water treatment processes., Office of Research and Development, EPA/625/R-00/015, Washington D.C
  22. Zhang H., Zuehlke S., Guenther G., and Spiteller M. (2007), Enantioselective separation and determination of single nonyl-phenol isomers., Chemosphere, 66:594-602. https://doi.org/10.1016/j.chemosphere.2006.08.012