DOI QR코드

DOI QR Code

Flocculation Characteristics of Microalgae Through Combined Flocculants

응집제 혼합을 이용한 미세조류의 응집 특성

  • Kwon, Do-Yeon (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Jung, Chang-Kyou (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lee, Choul-Gyun (Department of Biological Engineering, Inha University) ;
  • Lee, Jin-Won (Department of Chemical and Biomolecular Engineering, Sogang University)
  • 권도연 (서강대학교 화공생명공학과) ;
  • 정창규 (서강대학교 화공생명공학과) ;
  • 이철균 (인하대학교 생명공학과) ;
  • 이진원 (서강대학교 화공생명공학과)
  • Received : 2011.08.24
  • Accepted : 2011.10.25
  • Published : 2011.10.31

Abstract

In this study, inorganic flocculant with biodegradable polymer flocculant was usedfor microalgae harvest. The aim of this study was to optimize the concentration of inorganic flocculant, the concentration of biodegradable polymer flocculant and reaction volume for decreasing the amounts of flocculant and obtaining the suitable pH range for seawater by response surface methodology. The flocculation of three marine microalgae, Chlorella ellipsoidea, Dunaliella bardawil, and Dunaliella tertiolecta, using inorganic flocculants and biodegradable polymer flocculants was investigated. The results indicated that the optimal flocculant quantity showed 0.1 g/L of ferric chloride, 7.5 g/L of chitosan on Chlorella ellipsoidea. In the case of Dunaliella bardawil, the optimal flocculant quantity showed amount of ferric sulfate more than 0.12 g/L and chitosan more than 0.75 g/L. In the case of Dunaliella tertiolecta, the optimal flocculant quantity showed 1.0 g/L of sodium aluminate, 0.75 g/L of chitosan.

Keywords

References

  1. Brennan, L. and P. Owende (2010) Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energ. Rev. 14: 557-577. https://doi.org/10.1016/j.rser.2009.10.009
  2. Sharif Hossain, A. B. M. and A. Salleh (2008) Biodiesel Fuel Production from Algae as Renewable Energy. Am. J. Biochem. Biotech. 4: 250-254. https://doi.org/10.3844/ajbbsp.2008.250.254
  3. Szklo, A. and R. Schaeffer (2006) Alternative energy sources or integrated alternative energy systems? Oil as a modern lance of Peleus for the energy transition. Energ. 31: 2513-2522. https://doi.org/10.1016/j.energy.2005.11.001
  4. Junginger, M., T. $Bolkesj{\phi}$, D. Bradley, P. Dolzan, A. Faaij, J. Heinimo, B. Hektor, $\phi$. Leistad, E. Ling, M. Perry, E. Piacente, Frank, R. C., Y. Ryckmans, P. P. Schouwenberg, B. Solberg, E. $Tr{\phi}mborg$, A. da S. Walter, and M. de Wit (2008) Developments in international bioenergy trade. Biomass Bioenerg. 32: 717-729. https://doi.org/10.1016/j.biombioe.2008.01.019
  5. Harun, R., M. Davidson, M. Doyle, R. Gopiraj, M. Danquah, and G. Forde (2011) Technoeconomic analysis of an integrated microalgae photobioreactor, biodiesel and biogas production facility. Biomass Bioenerg. 35: 741-747. https://doi.org/10.1016/j.biombioe.2010.10.007
  6. Li, Y., M. Horsman, N. Wu, C. Q. Lan, and Nathalie D. C. (2008) Biofuels from Microalgae. Biotechnol. Prog. 24: 815-820.
  7. Chisti Y. (2007) Biodiesel from microalgae. Biotechnol. Adv. 25: 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001
  8. Raja, R., S. Hemaiswarya, N. A. Kumar, S. Sridhar, and R. Rengasamy (2008) A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 34: 77-88. https://doi.org/10.1080/10408410802086783
  9. Lee, A. K., D. M. Lewis, and P. J. Ashman (2009) Microbial flocculation, a potentially low-cost harvesting technique for marine microalgae for the production of biodiesel. J. Appl. Phycol. 21: 559-567. https://doi.org/10.1007/s10811-008-9391-8
  10. Dismukes, C. G., D. Carrieri, N. Bennette, G. M. Ananyev, and M. C. Posewitz (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19: 235-240. https://doi.org/10.1016/j.copbio.2008.05.007
  11. Somasundaran, P. and T. Hubbard (2006) Encyclopedia of surface and colloid science. 2nd ed., pp. 2588-2591. CRC Press, Taylor & Francis Group, NY, USA.
  12. Uduman, N., Y. Qi, M. K. Danquah, G. M. Forde, and A. Hoadley (2010) Dewatering of microalgal cultures: A major bottleneck to algae-based fuels. J. Renew. Sustain. Energ. 2, 012701. https://doi.org/10.1063/1.3294480
  13. Kwon, D. Y., C. K. Jung, K. B. Park, C. G. Lee, and J. W. Lee (2011) Flocculation characteristics of microalgae using chemical flocculants. Korean J. Biotechnol. Bioeng. 26: 143-150.
  14. Kurane, R. and H. Matsuyama (1994) Production of a bioflocculant by mixed culture. Biosci. Biotechnol. Biochem. 58: 1589-1594. https://doi.org/10.1271/bbb.58.1589
  15. Patil, S. V., C. D. Patil, B. K. Salunke, R. B. salunkhe, G. A. Bathe, and D. M. Patil (2011) Studies on characterization of bioflocculant exopolysaccharide of Azotobacter indicus and its potential for wastewater treatment. Appl. Biochem. Biotechnol. 163: 463-472. https://doi.org/10.1007/s12010-010-9054-5
  16. Salehizadeh, H. and S. A. Shojaosadati (2002) Isolation and characterization of a bioflocculant produced by Bacillus firmus. Biotechnol. Lett. 24: 35-40. https://doi.org/10.1023/A:1013853115624
  17. Divakaran, R. and V. N. Sivasankara Pillai (2002) Flocculation of algae using chitosan. J. Appl. Phycol. 14: 479-422.
  18. Vandamme, D., I. Foubert, B. Meesschaert, and K. Muylaert (2010) Floccualtion of microalgae using cationic starch. J. Appl. Phycol. 22: 525-530. https://doi.org/10.1007/s10811-009-9488-8
  19. Oh, H. M., S. J. Lee, M. H. Park, H. S. Kim, H. C. Kim, J. H. Yoon, G. S. Kwon, and B. D. Yoon (2001) Harvesting of Chlorella vulgaris using a bioflocculant from Paenibacillus sp. AM49. Biotechnol. Lett. 23: 1229-1234. https://doi.org/10.1023/A:1010577319771
  20. Golueke, C. G. and W. J. Oswald (1965) Harvesting and processing sewage-grown planktonic algae. J. Water Pollut. Contr. 37: 471-498.
  21. Lubián L. M. (1989) Concentrating cultured marine microalgae with chitosan. Aquacul. Engineer. 8: 257-265. https://doi.org/10.1016/0144-8609(89)90013-7
  22. Morales, J., J. de la Noüe, and G. Picard (1985) Harvesting marine microalgae species by chitosan flocculation. Aquacul. Engineer. 4: 257-270. https://doi.org/10.1016/0144-8609(85)90018-4
  23. Gualtieri, P., L. Barsanti, and V. Passarelli (1988) Chitosan as flocculant for concentrating Euglena gracilis cultures. Ann. Inst. Pasteur. Microbiol. 139: 717-726. https://doi.org/10.1016/0769-2609(88)90076-2
  24. Lertsutthiwong, P., S. Sutti, and S. Powtongsook (2009) Optimization of chitosan flocculation for phytoplankton removal in shrimp culture ponds. Aquacul. Engineer. 41: 188-193. https://doi.org/10.1016/j.aquaeng.2009.07.006
  25. Grima, E. M., E. H. Belarbi, F. G. A. Fernandez, A. R. Medina, and Y. Chisti (2003) Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol. Adv. 20: 491-515. https://doi.org/10.1016/S0734-9750(02)00050-2

Cited by

  1. Utilization of response surface methodology to optimize a coagulation-flocculation process for tunnel wastewater treatment vol.28, pp.5, 2014, https://doi.org/10.11001/jksww.2014.28.5.601