DOI QR코드

DOI QR Code

Antimicrobial Treatment of Grapes Using Sodium Hypochlorite in Winemaking and Its Effects on the Chemical and Sensory Characteristics of Wines

  • Yoo, Ki-Seon (Department of Food Science and Technology, Chungbuk National University) ;
  • Ahn, Ji-Eun (Department of Food Science and Technology, Chungbuk National University) ;
  • Han, Jin-Soo (Institute for the 3Rs & Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University) ;
  • Seo, Eun-Young (Department of Food Science and Technology, Chungbuk National University) ;
  • Otgonbayar, Gan-Erdene (Department of Food Science and Technology, Chungbuk National University) ;
  • Han, Nam-Soo (Department of Food Science and Technology, Chungbuk National University)
  • Received : 2011.05.11
  • Accepted : 2011.07.30
  • Published : 2011.12.28

Abstract

This study was performed to examine the use of NaOCl as an alternative antimicrobial compound in winemaking because of the potential health problems that may arise as a result of the use of $SO_2$. For this, the blank (non-treated), control ($SO_2$-added), and sample (NaOCl-treated) wines were made, and microbial and chemical changes including sensory characteristics were analyzed during the fermentation periods. Treatment of grapes with NaOCl decreased the initial contaminating microbial population in grape must, resulting in higher growth of yeast and lactic acid bacteria. After 200 days of fermentation, the chemical analysis of sample wine revealed that it had higher ethanol content, redness ($a^*$), and concentrations of fruity ester compounds and lower total acidity than the control. In the sensory analyses, the sample wine obtained a higher overall acceptability score (5.70) than the control (4.26). This result reveals that NaOCl can be used as an alternative to $SO_2$ in winemaking for inhibiting the growth of contaminating microorganisms.

Keywords

References

  1. Agouridis, N., N. Kopsahelis, S. Plessas, A. A. Koutinas, and M. Kanellaki. 2008. Oenococcus oeni cells immobilized on delignified cellulosic material for malolactic fermentation of wine. Bioresource Technol. 99: 9017-9020. https://doi.org/10.1016/j.biortech.2008.04.026
  2. Akbas, M. Y. and H. Olmez. 2007. Inactivation of Escherichia coli and Listeria monocytogenes on iceberg lettuce by dip wash treatments with organic acids. Lett. Appl. Microbiol. 44: 619-624. https://doi.org/10.1111/j.1472-765X.2007.02127.x
  3. Allende, A., J. McEvoy, Y. Tao, and Y. Luo. 2009. Antimicrobial effect of acidified sodium chlorite, sodium chlorite, sodium hypochlorite, and citric acid on Escherichia coli O157:H7 and natural microflora of fresh-cut cilantro. Food Control 20: 230-234. https://doi.org/10.1016/j.foodcont.2008.05.009
  4. Bartowsky, E. J. and P. A. Henschke. 2008. Acetic acid bacteria spoilage of bottled red wine - A review. Int. J. Food Microbiol. 125: 60-70. https://doi.org/10.1016/j.ijfoodmicro.2007.10.016
  5. Blumenthal, M. N. 2005. The role of genetics in the development of asthma and atopy. Curr. Opin. Allergy Clin. 5: 141-145. https://doi.org/10.1097/01.all.0000162306.12728.c2
  6. Calleja, A. and E. Falque. 2005. Volatile composition of Mencia wines. Food Chem. 90: 357-363. https://doi.org/10.1016/j.foodchem.2004.04.013
  7. Campos, F. M., A. R. Figueiredo, T. A. Hogg, and J. A. Couto. 2009. Effect of phenolic acids on glucose and organic acid metabolism by lactic acid bacteria from wine. Food Microbiol. 26: 409-414. https://doi.org/10.1016/j.fm.2009.01.006
  8. Carballo, R., V. C. Dall'Orto, A. L. Balbo, and I. Rezzano. 2003. Determination of sulfite by flow injection analysis using a poly [Ni-(protoporphyrin IX)] chemically modified electrode. Sensor. Actuat. B Chem. 88: 155-161. https://doi.org/10.1016/S0925-4005(02)00319-2
  9. Clarke, R. J. and J. Bakker. 2004. Volatile components, pp. 120-188. In R. J. Clarke and J. Bakker. (eds.). Wine Flavour Chemistry. Blackwell Publishing Ltd., Oxford.
  10. Claudia, R. C. and J. C. Francisco. 2009. Application of flow injection analysis for determining sulphites in food and beverages: A review. Food Chem. 112: 487-493. https://doi.org/10.1016/j.foodchem.2008.05.085
  11. Food and Drug Administration (FDA). 2000. Sulfites: An important food safety issue; an update on regulatory status and methodologies. http://www.cfsan.fda.gov/-dms/fssulfit.html.
  12. Food and Drug Administration (FDA). 2007. Guidance for industry: Guide to minimize microbial food safety hazards for fruits and vegetables. http://www.cfsan.fda.gov/-dms/ prodguid.html.
  13. Fredericks, I. N., M. D. Toit, and M. Krügel. 2011. Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines. Food Microbiol. 28: 510-517. https://doi.org/10.1016/j.fm.2010.10.018
  14. Ganan, M., A. J. Martínez-Rodriguez, and A. V. Carrascosa. 2009. Antimicrobial activity of phenolic compounds of wine against Campylobacter jejuni. Food Control 20: 739-742. https://doi.org/10.1016/j.foodcont.2008.09.012
  15. Garde-Cerdan, T. and C. Ancin-Azpilicueta. 2007. Effect of $SO_{2}$on the formation and evolution of volatile compounds in wines. Food Control 18: 1501-1506. https://doi.org/10.1016/j.foodcont.2006.11.001
  16. Haruta, S., S. Ueno, I. Egawa, K. Hashiguchi, A. Fuji, M. Nagano, et al. 2006. Succession of bacterial and fungal communities during a traditional pot fermentation of rice vinegar assessed by PCR-mediated denaturing gradient gel electrophoresis. Int. J. Food Microbiol. 109: 79-87. https://doi.org/10.1016/j.ijfoodmicro.2006.01.015
  17. Heaton, J. C. and K. Jones. 2007. Microbial contamination of fruit and vegetables and the behaviour of enteropathogens in the phyllosphere: A review. J. Appl. Microbiol. 104: 613-626.
  18. Korea Food and Drug Administration (KFDA). 2011. Korea food additives code. http://www.kfda.go.kr/fa/index.do?page_gubun.
  19. Lasanta, C., A. Roldan, I. Caro, L. Perez, and V. Palacios. 2010. Use of lysozyme for the prevention and treatment of heterolactic fermentation in the biological aging of sherry wines. Food Control 21: 1442-1447. https://doi.org/10.1016/j.foodcont.2010.03.013
  20. Lee, J. E., H. D. Hong, H. D. Choi, Y. S. Shin, Y. D. Won, S. S. Kim, and K. H. Koh. 2003. A study on the sensory characteristics of Korean red wine. Korean J. Food Sci. Technol. 35: 841-848.
  21. Lee, S. J., J. E. Lee, H. W. Kim, S. S. Kim, and K. H. Koh. 2006. Development of Korean red wines using Vitis labrusca varieties: Instrumental and sensory characterization. Food Chem. 94: 385-393. https://doi.org/10.1016/j.foodchem.2004.11.035
  22. Lopez, E. P. N., S. C. J. Raso, and I. Alvarez. 2009. Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int. J. Food Microbiol. 130: 49-55. https://doi.org/10.1016/j.ijfoodmicro.2008.12.035
  23. Maicas, S., J. V. Gil, I. Pardo, and S. Ferrer. 1999. Improvement of volatile composition of wines by controlled addition of malolactic bacteria. Food Res. Int. 32: 491-496. https://doi.org/10.1016/S0963-9969(99)00122-2
  24. Mamede, M. E. O., H. M. A. B. Cardello, and G. M. Pastore. 2005. Evaluation of an aroma similar to that of sparkling wine: Sensory and gas chromatography analyses of fermented grape musts. Food Chem. 89: 63-68. https://doi.org/10.1016/j.foodchem.2004.02.012
  25. Margalit, Y. 2004. Pre-harvest, pp. 3-20. In J. Brown, B. Imelli, and A. Shaw. (eds.). Conception in Wine Technology. The Wine Appreciation Guild Ltd., San Francisco.
  26. Margalit, Y. 2004. General aspects, pp. 179-190. In J. Brown, B. Imelli, and A. Shaw. (eds.). Conception in Wine Technology. The Wine Appreciation Guild Ltd., San Francisco.
  27. Ough, C. S. and M. A. Amerine. 1988. Chemical additives, pp. 222-263. In A. Amerine and C. S. Ough. (eds.). Methods for Analysis of Musts and Wines. John Wiley & Sons, Inc., Hoboken.
  28. Ough, C. S. and E. A. Crowell. 1987. Use of sulfur dioxide in winemaking. J. Food Sci. 52: 386-389. https://doi.org/10.1111/j.1365-2621.1987.tb06620.x
  29. Puertolas, E., N. Lopez, S. Condón, J. Raso, and I. Alvares. 2009. Pulsed electric fields inactivation of wine spoilage yeast and bacteria. Int. J. Food Microbiol. 130: 49-55. https://doi.org/10.1016/j.ijfoodmicro.2008.12.035
  30. Rapp, A. and H. Mandery. 1986. Wine aroma. Cell. Mol. Life Sci. 42: 873-884. https://doi.org/10.1007/BF01941764
  31. Rocha, S. M., F. Rodrigues, P. Coutinho, I. Delgadillo, and M. A. Coimbra. 2004. Volatile composition of Baga red wine: Assessment of the identification of the would-be impact odourants. Anal. Chim. Acta 513: 257-262. https://doi.org/10.1016/j.aca.2003.10.009
  32. Rojo-Bezares, B., Y. Sáenz, M. Zarazaga, C. Torres, and F. Ruiz-Larrea. 2007. Antimicrobial activity of nisin against Oenococcus oeni and other wine bacteria. Int. J. Food Microbiol. 116: 32-36. https://doi.org/10.1016/j.ijfoodmicro.2006.12.020
  33. Sims, C. A. and J. R. Morris. 1984. Effects of pH, sulfer dioxide, storage time, and temperature on the color and stability of red Muscadine grape wine. Am. J. Enol. Viticult. 35: 35-39.
  34. Tirali, R. E., Y. Turan, N. Akal, and Z. C. Karahan. 2009. In vitro antimicrobial activity of several concentrations of NaOCl and Octenisept in elimination of endodontic pathogens. Oral. Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 108: 117-120.
  35. Vaquero, M. J. R., M. R. Alberto, and M. C. M. Nadra. 2007. Antibacterial effect of phenolic compounds from different wines. Food Control 18: 93-101. https://doi.org/10.1016/j.foodcont.2005.08.010
  36. Yoo, K. S., J. S. Kim, Q. Kim, J. S. Moon, M. D. Kim, and N. S. Han. 2008. Chemical analysis and sensory evaluation of commercial red wines in Korea. Korean J. Food Sci. Technol. 40: 430-435.
  37. Yoo, K. S., J. E. Kim, J. S. Moon, J. Y. Jung, J. S. Kim, H. S. Yoon, et al. 2010. Evaluation of a volatile aroma preference of commercial red wines in Korea: Sensory and gas chromatography characterization. Food Sci. Biotechnol. 19: 43-49. https://doi.org/10.1007/s10068-010-0006-1

Cited by

  1. Enhancing the Antioxidant Activities of Wines by Addition of White Rose Extract vol.27, pp.9, 2011, https://doi.org/10.4014/jmb.1704.04034