References
- Bayly, R. C., S. Dagley, and D. T. Gibson. 1966. The metabolism of cresols by species of Pseudomonas. Biochem. J. 101: 293-301. https://doi.org/10.1042/bj1010293
- Bertani, L. E. and G. Bertani. 1970. Preparation and characterization of temperate, non-inducible bacteriophage P2 (host: Escherichia coli). J. Gen. Virol. 6: 201-212. https://doi.org/10.1099/0022-1317-6-2-201
- Borrell, B. 2009. Why study pig odor? Sci. Am. Accessed at http:// www.scientificamerican.com/article.cfm?id=why-study-pig-odor.
- Cho, J. H., D. K. Jung, K. Lee, and S. Rhee. 2009. Crystal structure and functional analysis of the extradiol dioxygenase LapB from a long-chain alkylphenol degradation pathway in Pseudomonas. J. Biol. Chem. 284: 34321-34330. https://doi.org/10.1074/jbc.M109.031054
- Cho, M. C., D.-O. Kang, B. D. Yoon, and K. Lee. 2000. Toluene degradation pathway from Pseudomonas putida F1: Substrate specificity and gene induction by 1-substituted benzenes. J. Ind. Microbiol. Biotechnol. 25: 163-170. https://doi.org/10.1038/sj.jim.7000048
- Choi, E. N., M. C. Cho, Y. Kim, C. K. Kim, and K. Lee. 2003. Expansion of growth substrate range in Pseudomonas putida F1 by mutations in both cymR and todS, which recruit a ringfission hydrolase CmtE and induce the tod catabolic operon, respectively. Microbiology 149: 795-805. https://doi.org/10.1099/mic.0.26046-0
- Cunane, L. M., Z. W. Chen, N. Shamala, F. S. Mathews, C. N. Cronin, and W. S. McIntire. 2000. Structures of the flavocytochrome p-cresol methylhydroxylase and its enzyme-substrate complex: Gated substrate entry and proton relays support the proposed catalytic mechanism. J. Mol. Biol. 295: 357-374. https://doi.org/10.1006/jmbi.1999.3290
- de Lorenzo, V., M. Herrero, U. Jakubzik, and K. N. Timmis. 1990. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J. Bacteriol. 172: 6568-6572.
- Dennis, J. J. and G. J. Zylstra. 1998. Plasposons: Modular selfcloning minitransposon derivatives for rapid genetic analysis of Gram-negative bacterial genomes. Appl. Environ. Microbiol. 64: 2710-2715.
- Figurski, D. H. and D. R. Helinski. 1979. Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc. Natl. Acad. Sci. USA 76: 1648-1652. https://doi.org/10.1073/pnas.76.4.1648
- Harwood, C. S. and R. E. Parales. 1996. The beta-ketoadipate pathway and the biology of self-identity. Annu. Rev. Microbiol. 50: 553-590. https://doi.org/10.1146/annurev.micro.50.1.553
- Hopper, D. J. 1976. The hydroxylation of p-cresol and its conversion to p-hydroxybenzaldehyde in Pseudomonas putida. Biochem. Biophys. Res. Commun. 69: 462-468. https://doi.org/10.1016/0006-291X(76)90544-1
- Jeong, J. J., J. H. Kim, C. K. Kim, I. Hwang, and K. Lee. 2003. 3- and 4-alkylphenol degradation pathway in Pseudomonas sp. strain KL28: Genetic organization of the lap gene cluster and substrate specificities of phenol hydroxylase and catechol 2,3- dioxygenase. Microbiology 149: 3265-3277. https://doi.org/10.1099/mic.0.26628-0
- Joesaar, M., E. Heinaru, S. Viggor, E. Vedler, and A. Heinaru. 2010. Diversity of the transcriptional regulation of the pch gene cluster in two indigenous p-cresol-degradative strains of Pseudomonas fluorescens. FEMS Microbiol. Ecol. 72: 464-475. https://doi.org/10.1111/j.1574-6941.2010.00858.x
- Kim, J., J. H. Fuller, G. Cecchini, and W. S. McIntire. 1994. Cloning, sequencing, and expression of the structural genes for the cytochrome and flavoprotein subunits of p-cresol methylhydroxylase from two strains of Pseudomonas putida. J. Bacteriol. 176: 6349-6361. https://doi.org/10.1128/jb.176.20.6349-6361.1994
- Kim, J. S., J. H. Kim, E. K. Ryu, J.-K. Kim, C.-K. Kim, I. Hwang, and K. Lee. 2004. Versatile catabolic properties of the Tn4371-encoded bph pathway in Comamonas testosteroni (formerly Pseudomonas sp.) NCIMB 10643. J. Microbiol. Biotechnol. 14: 302-311.
- Kukor, J. J. and R. H. Olsen. 1992. Complete nucleotide sequence of tbuD, the gene encoding phenol/cresol hydroxylase from Pseudomonas pickettii PKO1, and functional analysis of the encoded enzyme. J. Bacteriol. 174: 6518-6526.
- Larsen, R. A., M. M. Wilson, A. M. Guss, and W. W. Metcalf. 2002. Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch. Microbiol. 178: 193-201. https://doi.org/10.1007/s00203-002-0442-2
- Lee, K. and Y. Veeranagouda. 2009. Ultramicrocells form by reductive division in macroscopic Pseudomonas aerial structures. Environ. Microbiol. 11: 1117-1125. https://doi.org/10.1111/j.1462-2920.2008.01841.x
- Miller, V. L. and J. J. Mekalanos. 1988. A novel suicide vector and its use in construction of insertion mutations: Osmoregulation of outer membrane proteins and virulence determinants in Vibrio cholerae requires toxR. J. Bacteriol. 170: 2575-2583. https://doi.org/10.1128/jb.170.6.2575-2583.1988
- Schmidt, E. G. 1949. Urinary phenols; the simultaneous determination of phenol and p-cresol in urine. J. Biol. Chem. 179: 211-215.
- Shingler, V., J. Powlowski, and U. Marklund. 1992. Nucleotide sequence and functional analysis of the complete phenol/3,4- dimethylphenol catabolic pathway of Pseudomonas sp. strain CF600. J. Bacteriol. 174: 711-724. https://doi.org/10.1128/jb.174.3.711-724.1992
- Stanier, R. Y., N. J. Palleroni, and M. Doudoroff. 1966. The aerobic pseudomonads: A taxomonic study. J. Gen. Microbiol. 43: 159-271. https://doi.org/10.1099/00221287-43-2-159
- Suarez, A., A. Guttler, M. Stratz, L. H. Staendner, K. N. Timmis, and C. A. Guzman. 1997. Green fluorescent proteinbased reporter systems for genetic analysis of bacteria including monocopy applications. Gene 196: 69-74. https://doi.org/10.1016/S0378-1119(97)00197-2
- Tang, X., B. F. Lu, and S. Q. Pan. 1999. A bifunctional transposon mini-Tn5gfp-km which can be used to select for promoter fusions and report gene expression levels in Agrobacterium tumefaciens. FEMS Microbiol. Lett. 179: 37-42. https://doi.org/10.1111/j.1574-6968.1999.tb08704.x
- Thony, B. and H. Hennecke. 1989. The -24/-12 promoter comes of age. FEMS Microbiol. Rev. 5: 341-357.
- Wright, A. and R. H. Olsen. 1994. Self-mobilization and organization of the genes encoding the toluene metabolic pathway of Pseudomonas mendocina KR1. Appl. Environ. Microbiol. 60: 235-242.
- Yun, J. I., K. M. Cho, J. K. Kim, S. O. Lee, K. Cho, and K. Lee. 2007. Mutation of rpoS enhances Pseudomonas sp. KL28 growth at higher concentrations of m-cresol and changes its surface-related phenotypes. FEMS Microbiol. Lett. 269: 97- 103. https://doi.org/10.1111/j.1574-6968.2006.00610.x
Cited by
- Construction of Overexpression Vectors and Purification of the Oxygenase Component of Alkylphenol Hydroxylase of Pseudomonas alkylphenolia vol.49, pp.1, 2011, https://doi.org/10.7845/kjm.2013.008
- Characterization of a Unique Pathway for 4-Cresol Catabolism Initiated by Phosphorylation in Corynebacterium glutamicum vol.291, pp.12, 2011, https://doi.org/10.1074/jbc.m115.695320
- Pseudomonas alkylphenolica KL28에 존재하는 3종류의 p-cresol 분해 경로 및 유전자 발현 vol.52, pp.3, 2011, https://doi.org/10.7845/kjm.2016.6048
- Para -cresol production by Clostridium difficile affects microbial diversity and membrane integrity of Gram-negative bacteria vol.14, pp.9, 2011, https://doi.org/10.1371/journal.ppat.1007191