References
- Hughes, A. J. and A. Keatinge-Clay. 2011. Enzymatic extender unit generation for in vitro polyketide synthase reactions: Structural and functional showcasing of Streptomyces coelicolor MatB. Chem. Biol. 18: 165-176. https://doi.org/10.1016/j.chembiol.2010.12.014
- Jung, W. S., S. K. Lee, J. S. J. Hong, S. R. Park, S. J. Jeong, A. R. Han, et al. 2006. Heterologous expression of tylosin polyketide synthase and production of a hybrid bioactive macrolide in Streptomyces venezuelae. Appl. Microbiol. Biotechnol. 72: 763- 769. https://doi.org/10.1007/s00253-006-0318-5
- Jung, W. S., S. J. Jeong, S. R. Park, C. Y. Choi, B. C. Park, J. W. Park, and Y. J. Yoon. 2008. Enhanced heterologous production of desosaminyl macrolides and their hydroxylated derivatives by overexpression of the pikD regulatory gene in Streptomyces venezuelae. Appl. Environ. Microbiol. 74: 1972-1979. https://doi.org/10.1128/AEM.02296-07
- Kieser, T. M., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hoopwood. 2000. Practical Streptomyces Genetics. John Innes Foundation, Norwich, England.
- Leonard, E., Y. Yan, Z. L. Fowler, Z. Li, C. G. Lim, K. H. Lim, and M. A. Koffas. 2008. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol. Pharm. 5: 257-265. https://doi.org/10.1021/mp7001472
- Lombo, F., B. Pfeifer, T. Leaf, S. Ou, Y. S. Kim, D. E. Cane, P. Licari, and C. Khosla. 2001. Enhancing the atom economy of polyketide biosynthetic processes through metabolic engineering. Biotechnol. Prog. 17: 612-617. https://doi.org/10.1021/bp010045j
- Park, S. R., J. H. Paik, M. S. Ahn, J. W. Park, and Y. J. Yoon. 2010. Biosynthesis of plant-specific flavones and flavonols in Streptomyces venezuelae. J. Microbiol. Boitechnol. 20: 1295- 1299. https://doi.org/10.4014/jmb.1005.05038
- Park, S. R., J. A. Yoon, J. H. Paik, J. W. Park, W. S. Jung, Y. H. Ban, et al. 2009. Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae. J. Biotechnol. 141: 181-188. https://doi.org/10.1016/j.jbiotec.2009.03.013
- Quideau, S., D. Deffieux, C. Douat-Casassus, and L. Pouységu. 2011. Plant polyphenols: Chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. Engl. 50: 586-621. https://doi.org/10.1002/anie.201000044
- Weisshaar, B. and G. I. Jenkins. 1998. Phenylpropanoid biosynthesis and its regulation. Curr. Opin. Plant Biol. 1: 251- 257. https://doi.org/10.1016/S1369-5266(98)80113-1
- Winkel-Shirley, B. 2001. Flavonoid biosynthesis. A colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiol. 126: 485-493. https://doi.org/10.1104/pp.126.2.485
- Yao, L. H., Y. M. Jiang, J. Shi, F. A. Tomas-Barberan, N. Datta, R. Singanusong, and S. S. Chen. 2004. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr. 59: 113-122. https://doi.org/10.1007/s11130-004-0049-7
Cited by
- Alkaloids and Flavonoids of Aerial Parts ofIpomea pes-tigridis(Convolvulaceae) are Potential Inhibitors ofStaphylococcus epidermidisandPropionibacterium acnes vol.18, pp.4, 2011, https://doi.org/10.1080/10496475.2012.715118
- Towards a new science of secondary metabolism vol.66, pp.7, 2013, https://doi.org/10.1038/ja.2013.25
- Production of 3-O-xylosyl quercetin in Escherichia coli vol.97, pp.5, 2011, https://doi.org/10.1007/s00253-012-4438-9
- Biosynthesis of Pinocembrin from Glucose Using Engineered Escherichia coli vol.24, pp.11, 2011, https://doi.org/10.4014/jmb.1406.06011
- Iterative marker excision system vol.98, pp.10, 2014, https://doi.org/10.1007/s00253-014-5523-z
- Overexpression of ribosome recycling factor is responsible for improvement of nucleotide antibiotic-toyocamycin in Streptomyces diastatochromogenes 1628 vol.98, pp.11, 2011, https://doi.org/10.1007/s00253-014-5573-2
- A plant malonyl-CoA synthetase enhances lipid content and polyketide yield in yeast cells vol.98, pp.12, 2011, https://doi.org/10.1007/s00253-014-5612-z
- Microbial biosynthesis of medicinally important plant secondary metabolites vol.31, pp.11, 2011, https://doi.org/10.1039/c4np00057a
- Developing Streptomyces venezuelae as a cell factory for the production of small molecules used in drug discovery vol.38, pp.9, 2011, https://doi.org/10.1007/s12272-015-0638-z
- Heterologous expression of oxytetracycline biosynthetic gene cluster in Streptomyces venezuelae WVR2006 to improve production level and to alter fermentation process vol.100, pp.24, 2011, https://doi.org/10.1007/s00253-016-7873-1
- Engineering microbial hosts for production of bacterial natural products vol.33, pp.8, 2016, https://doi.org/10.1039/c6np00017g
- Microbial production of natural and non-natural flavonoids: Pathway engineering, directed evolution and systems/synthetic biology vol.34, pp.5, 2016, https://doi.org/10.1016/j.biotechadv.2016.02.012
- The acyl-activating enzyme PhAAE13 is an alternative enzymatic source of precursors for anthocyanin biosynthesis in petunia flowers vol.68, pp.3, 2011, https://doi.org/10.1093/jxb/erw426
- De Novo Biosynthesis of Apigenin, Luteolin, and Eriodictyol in the Actinomycete Streptomyces albus and Production Improvement by Feeding and Spore Conditioning vol.8, pp.None, 2011, https://doi.org/10.3389/fmicb.2017.00921
- Engineering microbial cell factories for the production of plant natural products: from design principles to industrial-scale production vol.16, pp.None, 2017, https://doi.org/10.1186/s12934-017-0732-7
- Production of plant-derived polyphenols in microorganisms: current state and perspectives vol.102, pp.4, 2011, https://doi.org/10.1007/s00253-018-8747-5
- Challenges in the microbial production of flavonoids vol.17, pp.2, 2011, https://doi.org/10.1007/s11101-017-9515-3
- Metabolic engineering of glycosylated polyketide biosynthesis vol.2, pp.3, 2018, https://doi.org/10.1042/etls20180011
- De novo biosynthesis of myricetin, kaempferol and quercetin in Streptomyces albus and Streptomyces coelicolor vol.13, pp.11, 2018, https://doi.org/10.1371/journal.pone.0207278
- Recent advancement of engineering microbial hosts for the biotechnological production of flavonoids vol.46, pp.6, 2011, https://doi.org/10.1007/s11033-019-05066-1
- Streptomyces as Microbial Chassis for Heterologous Protein Expression vol.9, pp.None, 2011, https://doi.org/10.3389/fbioe.2021.804295
- Coordinating precursor supply for pharmaceutical polyketide production in Streptomyces vol.69, pp.None, 2011, https://doi.org/10.1016/j.copbio.2020.11.006
- De novo biosynthesis of garbanzol and fustin in Streptomyces albus based on a potential flavanone 3‐hydroxylase with 2‐hydroxylase side activity vol.14, pp.5, 2011, https://doi.org/10.1111/1751-7915.13874
- Refactoring of a synthetic raspberry ketone pathway with EcoFlex vol.20, pp.1, 2011, https://doi.org/10.1186/s12934-021-01604-4