DOI QR코드

DOI QR Code

Suppressive Effects of Defatted Green Tea Seed Ethanol Extract on Cancer Cell Proliferation in HepG2 Cells

HepG2 Cell에서 녹차씨박 에탄올 추출물의 암세포 증식 억제효과

  • Noh, Kyung-Hee (School of Foods and Life Science and Institute of Basic Sciences, Inje University) ;
  • Min, Kwan-Hee (School of Foods and Life Science and Institute of Basic Sciences, Inje University) ;
  • Seo, Bo-Young (School of Foods and Life Science and Institute of Basic Sciences, Inje University) ;
  • Kim, Hye-Ok (School of Foods and Life Science and Institute of Basic Sciences, Inje University) ;
  • Kim, So-Hee (School of Culinary Art & Baking Technology, Dong-Ju College) ;
  • Song, Young-Sun (School of Foods and Life Science and Institute of Basic Sciences, Inje University)
  • 노경희 (인제대학교 식품생명과학부, 기초과학연구소) ;
  • 민관희 (인제대학교 식품생명과학부, 기초과학연구소) ;
  • 서보영 (인제대학교 식품생명과학부, 기초과학연구소) ;
  • 김혜옥 (인제대학교 식품생명과학부, 기초과학연구소) ;
  • 김소희 (동주대학 외식조리 & 제과계열) ;
  • 송영선 (인제대학교 식품생명과학부, 기초과학연구소)
  • Received : 2011.02.23
  • Accepted : 2011.03.16
  • Published : 2011.06.25

Abstract

Defatted green tea seed was extracted with 100% ethanol for 4 hr and then fractionated with petroleum ether, ethyl acetate and butanol. The ethanol and butanol extracts showed greater increases in antiproliferation potential against liver cancer cells than petroleum ether, ethyl acetate, $H_2O$, and hot water extracts did. Thus, this study was carried out to investigate the anti-proliferative actions of defatted green tea seed ethanol extract (DGTSE) in HepG2 cancer cells. The DGTSE contained catechins including EGC ($1039.1{\pm}15.2\;g/g$), tannic acid ($683.5{\pm}17.61\;{\mu}g/g$), EC ($62.4{\pm}5.00\;{\mu}g/g$), ECG ($24.4{\pm}7.81\;{\mu}g/g$), EGCG ($20.9{\pm}0.96\;{\mu}g/g$) and gallic acid ($2.4{\pm}0.68\;{\mu}g/g$), but caffeic acid was not detected when analyzed by HPLC. The anti-proliferation effect of DGTSE toward HepG2 cells was 83.13% when treated at $10\;{\mu}g$/mL, of DGTSE, offering an $IC_{50}$ of $6.58\;{\mu}g$/mL. DGTSE decreased CYP1A1 and CYP1A2 protein expressions in a dose-dependent manner. Quinone reductase and antioxidant response element (ARE)-luciferase activities were increased about 2.6 and 1.94-fold at a concentration of $20\;{\mu}g$/mL compared to a control group, respectively. Enhancement of phase II enzyme activity by DGTSE was shown to be mediated via interaction with ARE sequences in genes encoding the phase enzymes. DGTSE significantly (p<0.05) suppressed prostaglandin $E_2$ level, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) protein expressions, and NF${\kappa}$B translocation, but did not affected nitric oxide production. From the above results, it is concluded that DGTSE may ameliorate tumor and inflammatory reactions through the elevation of phase II enzyme activities and suppression of NF${\kappa}$B translocation and TNF-${\alpha}$ protein expressions, which support the cancer cell anti-proliferative effects of DGTSE in HepG2 cells.

본 연구는 간암세포주인 HepG2 cell line에서 녹차씨박 추출물을 에탄올, 석유 에테르, 에틸 아세테이트, 부탄올의 순으로 분획 및 열수 추출물을 조제하여 암세포 증식 억제능을 확인한 후 에탄올 추출물을 선정하여 항종양 및 항염증효과를 생화학적, 분자적 방법으로 분석하였다. 녹차씨박 에탄올 추출물(DGTSE)의 polyphenol 함량을 HPLC로 분석한 결과 EGC($1039.1{\pm}15.26\;{\mu}g/g$)> tannic acid($683.5{\pm}17.61\;{\mu}g/g$)> EC($62.4{\pm}5.00\;{\mu}g/g$)> ECG($24.4{\pm}7.81\;{\mu}g/g$)> EGCG($20.9{\pm}0.96\;{\mu}g/g$)> gallic acid($2.4{\pm}0.68\;{\mu}g/g$)의 순이었으나 caffeic acid는 검출되지 않았다. DGTSE의 농도가 $10\;{\mu}g$/mL 이상에서는 84.13%의 세포 증식 억제능($IC_{50}$: $6.58\;{\mu}g$/mL)을 보여 간암세포의 증식을 효과적으로 억제하였고 제1상효소계인 CYP1A1와 CYP1A2의 발현을 농도 의존적으로 감소시키는 것으로 나타났다. QR 활성은 DGTSE을 $20\;{\mu}g$/mL 농도로 처리 시 대조군에 비해 2.6배 증가하였으며 reporter gene activity로 측정한 ARE 활성은 1.94배로 각각 증가하였다. DGTSE의 처리는 염증생성 인자인 PGE2의 생성과 TNF-${\alpha}$의 단백질 발현은 유의적으로 저해하였으며 cytokine 반응, 염증, 세포성장조절과 같은 다양한 단계에 참여하는 전사인자인 NF${\kappa}$B의 핵으로의 translocation을 억제하였다. 이상의 결과에서 DGTSE은 간암세포인 HepG2 세포계에서 암세포 증식 억제능을 가지며 해독효소인 QR, ARE의 활성을 증진시키고 NF${\kappa}$B의 translocation을 방해하고 TNF-${\alpha}$의 단백질 발현과 $PGE_2$의 생성을 억제하여 암세포의 증식을 억제하였다. 따라서 녹차씨박 추출물에 함유된 암세포 증식효과를 나타내는 생리활성 물질들에 대한 연구가 앞으로 진행되어야 할 것으로 사료된다.

Keywords

References

  1. Seo HS, Chung BH, Cho YG. 2008. Antioxidant and anticancer effects of Agrimony (Agrimonia pilosa L.) and Chinese lizardtail (Saururus chinesis Baill). Korean J Medicinal Crop Sci 16: 139-143.
  2. Shon YH, Cho HJ, Chang HW, Son KH, Nam KS. 2006.Chemopreventive potential of Salvia miltiorrhiza fractionextracts. J Life Sci 16: 369-374. https://doi.org/10.5352/JLS.2006.16.3.369
  3. Kim SY, Son JH, Ha HC, Lee HW, Lee JS. 2002. Chemopreventive effects of the extracts from soybean fermented withbisidiomycetes. Kor J Mycol 30: 124-130. https://doi.org/10.4489/KJM.2002.30.2.124
  4. Moon JY. 2004. Inhibitory effect of Lentinus edodes aquaacupuncture solution on the cytochrome P450 1A1 and 1A2 activities. Korean J ournal of Meridian & Acupoint 21:139-145.
  5. Lawrence T, Gilroy DW, Colville-Nash PR. 2001. Possible new role for $NF-{\kappa}B $ in the resolution of inflammation. Nat Med 7: 1291-1297. https://doi.org/10.1038/nm1201-1291
  6. Riehemann K, Behnke B, Schulze-Osthoff K. 1999. Plant extracts from stinging nettle (Urtica dioica), an antirheumatic remedy, inhibit the proinflammatory transcription factor $NF-{\kappa}B $. FEBS Lett 442: 89-94. https://doi.org/10.1016/S0014-5793(98)01622-6
  7. Karacay B, Sanlioglu S, Griffith TS, Sandler A, Bonthius DJ. 2004. Inhibition of the $NF-{\kappa}B $ pathway enhances TRAILmediated apoptosis in neuroblastoma cells. Cancer Gene Ther 11: 681-690. https://doi.org/10.1038/sj.cgt.7700749
  8. Nathan CF. 1987. Secretory products of macrophages. J Clin Invest 79: 319-326. https://doi.org/10.1172/JCI112815
  9. Hirohashi N, Morrison D. 1996. Low-dose lipopolysaccharide (LPS) pretreatment of mouse macrophages modulates LPS-dependent interleukin-6 production in vitro. Infect Immun 64: 1011-1015.
  10. Park JS, Rho HS, Kim DH, Chang IS. 2006. Enzyme preparation of kaempferol from green tea seed and its antioxidant activity. J Agric Food Chem 54: 2951-2956. https://doi.org/10.1021/jf052900a
  11. Rah HH, Baik SO, Han SB, Bock JY. 1992. Chemical compositions of the seed of Korean green tea plant (Camellia sinecis L.). J Korean Agric Chem Soc 35: 272-275.
  12. Yosioka I, Nishimura T, Matsuda A, Kitagawa I. 1970.Saponin and sapogenol. II. Seeds sapogenols of Thea sinensis L. Theasapogenol A. Chem Pharm Bull 18: 1621-1632. https://doi.org/10.1248/cpb.18.1621
  13. Yoon WH, Choi JH, Lee KH, Kim CH. 2005. Antimicrobial and antitumor activities of seed extracts of Camellia sinensis L. Korean J Food Sci Technol 37: 108-112.
  14. Lee HB, Kim EK, Park SJ, Bang SG, Kim TG, Chung DW.2010. Isolation and characterization of nicotiflorin obtained by enzymatic hydrolysis of two precursors in tea seed extract. J Agric Food Chem 58: 4808-4813. https://doi.org/10.1021/jf9045182
  15. Benson AM, Hunkeler MJ, Talalay P. 1980. Increase of NAD(P)H:quinone reductase by dietary antioxidant; possible role in protection against carcinogenesis and toxicity. Proc Natl Acad Sci U S A 77: 5216-5220. https://doi.org/10.1073/pnas.77.9.5216
  16. Bradford MM. 1976. A rapid and sensitive method for the quantification of microgram quantities of proteins utilizing the principle of protein-dye binding. Ann Biochem 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  17. Green LC, Wagner DA, Glogowski J. 1982. Analysis of nitrate,nitrite, and [$15^N$] nitrate in biological fluids. Anal Biochem 126: 131-138. https://doi.org/10.1016/0003-2697(82)90118-X
  18. Lim HA, Jang CH, Kim JH, Kim JR, Ha YR, Song YS, KimYK, Kim JS. 2006. Antiproliferative and anticarcinogenic enzyme-inducing activities of green tea seed extract in hepatoma cells. Food Sci Biotechnol 15: 914-919.
  19. Zhou SF, Wang B, Yang LP, Liu JP. 2010. Structure, function, regulation and polymorphism and the clinical significance of human cytochrome P450 1A2. Drug Metab Rev 42: 268-354. https://doi.org/10.3109/03602530903286476
  20. Chatuphonprasert W, Kondo S, Jarukamjorn K, Kawasaki Y, Sakuma T, Nemoto N. 2010. Potent modification of inducible CYP1A1 expression by flavonoids. Biol Pharm Bull33: 1698-1703. https://doi.org/10.1248/bpb.33.1698
  21. Badal S, Williams SA, Huang G, Francis S, Vendantam P,Dunbar O, Jacobs H, Tzeng TJ, Gangemi J, Delgoda R.2010. Cytochrome P450 1 enzyme inhibition and anticancer potential of chromene amides from Amyris plumieri . Fitoterapia 82: 230-236.
  22. Lim SLJ, Singh O, Ramasamy RD, Ramasamy S, Subramanian K, Lee JDE, Chowbay B. 2010. Pharmacogenetics of CYP1A2, novel polymorphisms and haplotypes in three distinct Asian populations. Drug Metab Pharmacokinet 25:616-623. https://doi.org/10.2133/dmpk.DMPK-10-SC-051
  23. LaDuca JR, Gaspari AA. 2001. Targeting tumour necrosis factor alpha: New drugs used to modulate inflammatory diseases. Demratologic Clinics 19: 617-635. https://doi.org/10.1016/S0733-8635(05)70304-1
  24. Kim EH, Rhee DK. 2009. Anti-oxidative properties of ginseng. J Ginseng Res 33: 1-7. https://doi.org/10.5142/JGR.2009.33.1.001
  25. Seals DF, Courtneidge SA. 2003. The ADAMs family of metalloproteases: multidomain proteins with multiple functions. Genes Dev 17: 7-30. https://doi.org/10.1101/gad.1039703
  26. Funk CD. 2001. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294: 1871-1875.
  27. Bar-Shai M, Carmeli E, Ljubuncic P, Reznick AZ. 2008. Exercise and immobilization in aging animals: the involvement of oxidative stress and NF-kappaB activation. Free Radic Biol Med 44: 202-214. https://doi.org/10.1016/j.freeradbiomed.2007.03.019
  28. Grimm S, Baeuerle PA. 1993. The inducible transcription factor $NF{\kappa}B$: structure-function relationship of its protein subunits. Biochem J 290: 297-308. https://doi.org/10.1042/bj2900297
  29. Henkel T, Machleidt T, Alkalay I. 1993. Rapid proteolysis of $I{\kappa}B-{\alpha} $ is necessary for activation of transcription factor $NF{\kappa}B$. Nature 365: 182-185. https://doi.org/10.1038/365182a0
  30. Munoz C, Carlet J, Fitting C, Misset B, Bleriot JP, Cavaillon JM. 1991. Dysregulation of in vitro cytokine production by monocytes during sepsis. J Clin Invest 88: 1747-1754. https://doi.org/10.1172/JCI115493
  31. Baeuerle P, Henkel T. 1994. Function and activation of $NF{\kappa}B$ in the immune system. Annu Rev Immunol 12: 141-179. https://doi.org/10.1146/annurev.iy.12.040194.001041
  32. Allenm R, Tresini M. 2000. Oxidative stress and gene regulation. Free Radic Biol Med 28: 463-499.

Cited by

  1. Whitening Effect of Green Tea Seed Shell Ethanol Extracts vol.44, pp.10, 2015, https://doi.org/10.3746/jkfn.2015.44.10.1470
  2. Extraction Yield and Anti-Yeast Activity of Extract from Green Tea Seeds by Pretreatment and Extraction Conditions vol.45, pp.9, 2016, https://doi.org/10.3746/jkfn.2016.45.9.1351