DOI QR코드

DOI QR Code

Environmental Risk Factors for Attention Deficit Hyperactivity Disorder and Implications for Clinical Practice

주의력결핍 과잉행동장애의 환경요인과 임상적 의미

  • Kim, Jae-Won (Department of Psychiatry, Seoul National University College of Medicine)
  • 김재원 (서울대학교 의과대학 정신과학교실)
  • Received : 2010.09.09
  • Accepted : 2011.11.03
  • Published : 2011.03.31

Abstract

In this review, we have provided an overview of the environmental risk factors for attention deficit hyperactivity disorder (ADHD), focusing on the major environmental toxicants related to the disorder. Researchers have indicated that since the characteristics of ADHD are complex, the disorder’s etiology involves multiple genes of moderate effect interacting with environmental factors. The possible roles of prenatal and perinatal exposure have been the main focus of research on environmental risk factors for ADHD. Among environmental toxicants, we reviewed the potential effects on the development of ADHD of exposure to lead, nicotine, alcohol, polychlorinated biphenyls (PCBs), and dioxin. Further, for the each neurotoxicant, clinical prevention or intervention strategies aimed at reducing a child’s risk from environmental toxic insults have been presented.

Keywords

References

  1. Biederman J, Faraone SV. Attention-deficit hyperactivity disorder. Lancet 2005;366:237-248. https://doi.org/10.1016/S0140-6736(05)66915-2
  2. Makris N, Biederman J, Monuteaux MC, Seidman LJ. Towards conceptualizing a neural systems-based anatomy of attention-deficit/hyperactivity disorder. Dev Neurosci 2009;31:36-49. https://doi.org/10.1159/000207492
  3. Banerjee TD, Middleton F, Faraone SV. Environmental risk factors for attention-deficit hyperactivity disorder. Acta Paediatr 2007;96: 1269-1274. https://doi.org/10.1111/j.1651-2227.2007.00430.x
  4. Singh I. Beyond polemics: science and ethics of ADHD. Nat Rev Neurosci 2008;9:957-964. https://doi.org/10.1038/nrn2514
  5. Lanphear BP, Dietrich K, Auinger P, Cox C. Cognitive deficits associated with blood lead concentrations <10 microg/dL in US children and adolescents. Public Health Rep 2000;115:521-529. https://doi.org/10.1093/phr/115.6.521
  6. Canfield RL, Henderson CR Jr. Cory-Slechta DA, Cox C, Jusko TA, Lanphear BP. Intellectual impairment in children with blood lead concentrations below 10 microg per deciliter. N Engl J Med 2003;348:1517-1526. https://doi.org/10.1056/NEJMoa022848
  7. Rogan WJ, Ware JH. Exposure to lead in children--how low is low enough? N Engl J Med 2003;348:1515-1516. https://doi.org/10.1056/NEJMp030025
  8. Dorea JG. Mercury and lead during breast-feeding. Br J Nutr 2004; 92:21-40. https://doi.org/10.1079/BJN20041163
  9. Manton WI, Angle CR, Stanek KL, Reese YR, Kuehnemann TJ. Acquisition and retention of lead by young children. Environ Res 2000;82:60-80. https://doi.org/10.1006/enrs.1999.4003
  10. Nigg JT, Knottnerus GM, Martel MM, Nikolas M, Cavanagh K, Karmaus W, et al. Low blood lead levels associated with clinically diagnosed attention-deficit/hyperactivity disorder and mediated by weak cognitive control. Biol Psychiatry 2008;63:325-331. https://doi.org/10.1016/j.biopsych.2007.07.013
  11. Gilbert SG, Weiss B. A rationale for lowering the blood lead action level from 10 to 2microg/dL. Neurotoxicology 2006;27:693-701. https://doi.org/10.1016/j.neuro.2006.06.008
  12. Bellinger DC. Very low lead exposures and children's neurodevelopment. Curr Opin Pediatr 2008;20:172-177. https://doi.org/10.1097/MOP.0b013e3282f4f97b
  13. Braun JM, Kahn RS, Froehlich T, Auinger P, Lanphear BP. Exposures to environmental toxicants and attention deficit hyperactivity disorder in U.S. children. Environ Health Perspect 2006;114:1904-1909.
  14. Kostrzewa RM, Kostrzewa JP, Kostrzewa RA, Nowak P, Brus R. Pharmacological models of ADHD. J Neural Transm 2008;115:287-298. https://doi.org/10.1007/s00702-007-0826-1
  15. Mahaffey KR. Nutrition and lead: strategies for public health. Environ Health Perspect 1995;103 Suppl 6:191-196. https://doi.org/10.1289/ehp.95103s8191
  16. Ronchetti R, van den Hazel P, Schoeters G, Hanke W, Rennezova Z, Barreto M, et al. Lead neurotoxicity in children: is prenatal exposure more important than postnatal exposure? Acta Paediatr Suppl 2006;95:45-49. https://doi.org/10.1111/j.1651-2227.2007.00144.x
  17. Yiin LM, Lioy PJ, Rhoads GG. Impact of home carpets on childhood lead intervention study. Environ Res 2003;92:161-165. https://doi.org/10.1016/S0013-9351(03)00014-8
  18. Eskenazi B, Castorina R. Association of prenatal maternal or postnatal child environmental tobacco smoke exposure and neurodevelopmental and behavioral problems in children. Environ Health Perspect 1999;107:991-1000. https://doi.org/10.1289/ehp.99107991
  19. Langley K, Rice F, van den Bree MB, Thapar A. Maternal smoking during pregnancy as an environmental risk factor for attention deficit hyperactivity disorder behaviour. A review. Minerva Pediatr 2005;57:359-371.
  20. Yolton K, Dietrich K, Auinger P, Lanphear BP, Hornung R. Exposure to environmental tobacco smoke and cognitive abilities among U.S. children and adolescents. Environ Health Perspect 2005;113:98-103. https://doi.org/10.1289/ehp.113-a98
  21. Puig C, Garcia-Algar O, Monleon T, Pacifici R, Zuccaro P, Sunyer J, et al. A longitudinal study of environmental tobacco smoke exposure in children: parental self reports versus age dependent biomarkers. BMC Public Health 2008;8:47. https://doi.org/10.1186/1471-2458-8-47
  22. Britton AF, Vann RE, Robinson SE. Perinatal nicotine exposure eliminates peak in nicotinic acetylcholine receptor response in adolescent rats. J Pharmacol Exp Ther 2007;320:871-876.
  23. Court JA, Lloyd S, Thomas N, Piggott MA, Marshall EF, Morris CM, et al. Dopamine and nicotinic receptor binding and the levels of dopamine and homovanillic acid in human brain related to tobacco use. Neuroscience 1998;87:63-78. https://doi.org/10.1016/S0306-4522(98)00088-8
  24. Muneoka K, Nakatsu T, Fuji J, Ogawa T, Takigawa M. Prenatal administration of nicotine results in dopaminergic alterations in the neocortex. Neurotoxicol Teratol 1999;21:603-609. https://doi.org/10.1016/S0892-0362(99)00028-8
  25. Weiss S, Tzavara ET, Davis RJ, Nomikos GG, Michael McIntosh J, Giros B, et al. Functional alterations of nicotinic neurotransmission in dopamine transporter knock-out mice. Neuropharmacology 2007;52:1496-1508. https://doi.org/10.1016/j.neuropharm.2007.02.002
  26. Miao H, Liu C, Bishop K, Gong ZH, Nordberg A, Zhang X. Nicotine exposure during a critical period of development leads to persistent changes in nicotinic acetylcholine receptors of adult rat brain. J Neurochem 1998;70:752-762.
  27. Kollins SH, Garrett ME, McClernon FJ, Lachiewicz AM, Morrissey-Kane E, FitzGerald D, et al. Effects of postnatal parental smoking on parent and teacher ratings of ADHD and oppositional symptoms. J Nerv Ment Dis 2009;197:442-449. https://doi.org/10.1097/NMD.0b013e3181a61d9e
  28. Mazur LJ. Pediatric environmental health. Curr Probl Pediatr Adolesc Health Care 2003;33:6-25. https://doi.org/10.1016/S1538-5442(03)90017-4
  29. Merom D, Rissel C. Factors associated with smoke-free homes in NSW: results from the 1998 NSW Health Survey. Aust N Z J Public Health 2001;25:339-345. https://doi.org/10.1111/j.1467-842X.2001.tb00590.x
  30. Huizink AC, Mulder EJ. Maternal smoking, drinking or cannabis use during pregnancy and neurobehavioral and cognitive functioning in human offspring. Neurosci Biobehav Rev 2006;30:24-41. https://doi.org/10.1016/j.neubiorev.2005.04.005
  31. Knopik VS, Sparrow EP, Madden PA, Bucholz KK, Hudziak JJ, Reich W, et al. Contributions of parental alcoholism, prenatal substance exposure, and genetic transmission to child ADHD risk: a female twin study. Psychol Med 2005;35:625-635. https://doi.org/10.1017/S0033291704004155
  32. Linnet KM, Dalsgaard S, Obel C, Wisborg K, Henriksen TB, Rodriguez A, et al. Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence. Am J Psychiatry 2003;160:1028-1040. https://doi.org/10.1176/appi.ajp.160.6.1028
  33. Mick E, Biederman J, Faraone SV, Sayer J, Kleinman S. Case-control study of attention-deficit hyperactivity disorder and maternal smoking, alcohol use, and drug use during pregnancy. J Am Acad Child Adolesc Psychiatry 2002;41:378-385. https://doi.org/10.1097/00004583-200204000-00009
  34. Hill SY, Lowers L, Locke-Wellman J, Shen SA. Maternal smoking and drinking during pregnancy and the risk for child and adolescent psychiatric disorders. J Stud Alcohol 2000;61:661-668. https://doi.org/10.15288/jsa.2000.61.661
  35. Kim JW, Park CS, Hwang JW, Shin MS, Hong KE, Cho SC, et al. Clinical and genetic characteristics of Korean male alcoholics with and without attention deficit hyperactivity disorder. Alcohol Alcohol 2006;41:407-411. https://doi.org/10.1093/alcalc/agl034
  36. Reich W, Earls F, Frankel O, Shayka JJ. Psychopathology in children of alcoholics. J Am Acad Child Adolesc Psychiatry 1993;32: 995-1002. https://doi.org/10.1097/00004583-199309000-00017
  37. Williams JH, Ross L. Consequences of prenatal toxin exposure for mental health in children and adolescents: a systematic review. Eur Child Adolesc Psychiatry 2007;16:243-253. https://doi.org/10.1007/s00787-006-0596-6
  38. Kimura-Kuroda J, Nagata I, Kuroda Y. Disrupting effects of hydroxy-polychlorinated biphenyl (PCB) congeners on neuronal development of cerebellar Purkinje cells: a possible causal factor for developmental brain disorders? Chemosphere 2007;67:S412-S420. https://doi.org/10.1016/j.chemosphere.2006.05.137
  39. Ross G. The public health implications of polychlorinated biphenyls (PCBs) in the environment. Ecotoxicol Environ Saf 2004;59: 275-291. https://doi.org/10.1016/j.ecoenv.2004.06.003
  40. Schantz SL, Widholm JJ, Rice DC. Effects of PCB exposure on neuropsychological function in children. Environ Health Perspect 2003;111:357-576. https://doi.org/10.1289/ehp.5461
  41. Vreugdenhil HJ, Mulder PG, Emmen HH, Weisglas-Kuperus N. Effects of perinatal exposure to PCBs on neuropsychological functions in the Rotterdam cohort at 9 years of age. Neuropsychology 2004;18:185-193. https://doi.org/10.1037/0894-4105.18.1.185
  42. Sable HJ, Powers BE, Wang VC, Widholm JJ, Schantz SL. Alterations in DRH and DRL performance in rats developmentally exposed to an environmental PCB mixture. Neurotoxicol Teratol 2006;28:548-556. https://doi.org/10.1016/j.ntt.2006.06.005
  43. Stewart P, Reihman J, Gump B, Lonky E, Darvill T, Pagano J. Response inhibition at 8 and 9 1/2 years of age in children prenatally exposed to PCBs. Neurotoxicol Teratol 2005;27:771-780. https://doi.org/10.1016/j.ntt.2005.07.003
  44. Lee DH, Jacobs DR, Porta M. Association of serum concentrations of persistent organic pollutants with the prevalence of learning disability and attention deficit disorder. J Epidemiol Community Health 2007;61:591-596. https://doi.org/10.1136/jech.2006.054700
  45. Shain W, Bush B, Seegal R. Neurotoxicity of polychlorinated biphenyls: structure-activity relationship of individual congeners. Toxicol Appl Pharmacol 1991;111:33-42. https://doi.org/10.1016/0041-008X(91)90131-W
  46. Hauser P, Zametkin AJ, Martinez P, Vitiello B, Matochik JA, Mixson AJ, et al. Attention deficit-hyperactivity disorder in people with generalized resistance to thyroid hormone. N Engl J Med 1993;328:997-1001. https://doi.org/10.1056/NEJM199304083281403
  47. Winneke G, Walkowiak J, Lilienthal H. PCB-induced neurodevelopmental toxicity in human infants and its potential mediation by endocrine dysfunction. Toxicology 2002;181-182:161-165.
  48. Ribas-Fito N, Sala M, Kogevinas M, Sunyer J. Polychlorinated biphenyls (PCBs) and neurological development in children: a systematic review. J Epidemiol Community Health 2001;55:537-546. https://doi.org/10.1136/jech.55.8.537
  49. Lundqvist C, Zuurbier M, Leijs M, Johansson C, Ceccatelli S, Saunders M, et al. The effects of PCBs and dioxins on child health. Acta Paediatr Suppl 2006;95:55-64.
  50. Tanida T, Warita K, Ishihara K, Fukui S, Mitsuhashi T, Sugawara T, et al. Fetal and neonatal exposure to three typical environmental chemicals with different mechanisms of action: mixed exposure to phenol, phthalate, and dioxin cancels the effects of sole exposure on mouse midbrain dopaminergic nuclei. Toxicol Lett 2009;189:40-47. https://doi.org/10.1016/j.toxlet.2009.04.005
  51. Masuo Y, Morita M, Oka S, Ishido M. Motor hyperactivity caused by a deficit in dopaminergic neurons and the effects of endocrine disruptors: a study inspired by the physiological roles of PACAP in the brain. Regul Pept 2004;123:225-234. https://doi.org/10.1016/j.regpep.2004.05.010
  52. Kim BN, Cho SC, Kim Y, Shin MS, Yoo HJ, Kim JW, et al. Phthalates exposure and attention-deficit/hyperactivity disorder in schoolage children. Biol Psychiatry 2009;66:958-963. https://doi.org/10.1016/j.biopsych.2009.07.034
  53. Lakind JS, Naiman DQ. Daily intake of bisphenol A and potential sources of exposure: 2005-2006 National Health and Nutrition Examination Survey. J Expo Sci Environ Epidemiol;2010 p.17.
  54. Braun JM, Yolton K, Dietrich KN, Hornung R, Ye X, Calafat AM, et al. Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect 2009;117:1945-1952. https://doi.org/10.1289/ehp.0900979

Cited by

  1. Environmental and Familial Risk Factors of Children and Adolescents with Attention Deficit/Hyperactivity Disorder vol.52, pp.4, 2013, https://doi.org/10.4306/jknpa.2013.52.4.243
  2. Analysis of Heavy Metals in the Hair of Children with Attention-Deficit Hyperactivity Disorder and Tourette's Syndrome vol.23, pp.2, 2012, https://doi.org/10.5765/jkacap.2012.23.2.63
  3. The Distributional Changes in the First-Visit Psychiatric Child and Adolescent Outpatients at a University Hospital over a Ten-Year Period vol.26, pp.3, 2015, https://doi.org/10.5765/Jkacap.2015.26.3.165