DOI QR코드

DOI QR Code

Explosion Simulations for the Quantitative Risk Analysis of New Energy Filling Stations

신에너지 충전소의 정량적 위험성 평가를 위한 폭발 시뮬레이션

  • Dan, Seung-Kyu (Department of Chemical Engineering, Myongji University) ;
  • Park, Kyung-Jun (Department of Chemical Engineering, Myongji University) ;
  • Kim, Tae-Ok (Department of Chemical Engineering, Myongji University) ;
  • Shin, Dong-Il (Department of Chemical Engineering, Myongji University)
  • Received : 2011.01.03
  • Accepted : 2011.02.26
  • Published : 2011.02.28

Abstract

The interest about new and renewable energy is increasing to reduce the burden of problems by depletion of fossil fuels and air pollutions. For example, LNG/CNG and LPG are expected to be replaced, especially in transportation use, by HCNG mixture and DME-LPG mixture, respectively. Because these new energies are still flammable gases, it is not inherently safe from the explosion. In this research, the quantitative risk analysis for using alternative mixtures in existing recharging facilities has been studied by using three types of explosion models (TNT equivalency model, PHAST and CFD-based FLACS) to manage the risk effectively. The differences of results by models were compared against, and the practical ways of when and how to use these models were suggested. It was also predicted that conventional gas filling stations would be converted as new energy stations without additional explosion risk.

화석연료의 고갈과 대기오염 문제의 부담을 덜어줄 수 있는 신에너지 및 재생에너지에 대한 관심이 증가하면서 현재 사용 중인 LPG 및 LNG 가스의 대체 (혼합)연료로, DME (dimethyl ether)와 수소를 혼합 (HCNG)하여 사용하는 방안이 추진되고 있다. 이와 같은 에너지원은 인화성 가스 폭발의 위험을 가지고 있기 때문에, 본 연구에서는 기존의 시설에서 이 혼합연료를 사용할 경우에 대비한 안전관리의 일환으로, 3가지 폭발피해 예측방법 (TNT 당량모델, PHAST 및 CFD기반의 FLACS)을 이용하여 정량적 위험성 평가를 실시하였다. 그리고 각 폭발모델에 의해 산출된 사고결과인 과압의 차이를 비교하였고, 폭발모델의 사용방안을 제시하였다. 그 결과, 기존의 2가지 충전소에서 신에너지 혼합연료를 사용할 경우에는 폭발에 의한 추가 피해는 없을 것으로 예상되었다.

Keywords

References

  1. J. Jiang, Z. G. Liu, and A. K. Kim, Comparison of Blast Prediction Models for Vapor Cloud Explosion, Institute for Research in Construction, National Research Council, Canada, (2001)
  2. D. J. Park and Y. S. Lee, "A Comparison on Predictive Models of Gas Explosions", Korean Journal of Chemical Engineering, 26, 313-323, (2009) https://doi.org/10.1007/s11814-009-0054-5
  3. C. J. Lea, A Review of the State-of-the-Art in Gas Explosion Modelling, Health & Safety Laboratory, (2002)
  4. 이민철, 서석빈, 정재화, 안달홍, "신연료 DME의 복합화력발전소 적용을 위한 연소 성능실험", 대한기계학회 춘추학술대회, 1022-1027, (2006)
  5. 김은정, 김영규, 문일, "수소충전소의 안전성 향상을 위한 버츄얼리얼리티 프로그램 개발", 한국가스학회지, 12(4), 29-33 (2008)
  6. CCPS, Guidelines for Evaluating the Characteristics of Vapor Cloud Explosions, Flash Fires, and BLEVEs, Center for Chemical Process Safety, 2nd Ed., American Institute of Chemical Engineers, (1998)
  7. N. Djebaili and C. Paillard, "Burning Velocities of Dimethyl Ether and Air", Combustion and Flame, 125, 1329-1340, (2001) https://doi.org/10.1016/S0010-2180(01)00249-8
  8. Z. Huang, Q. Wang, J. Yu, and Y. Zhang, "Measurements of Laminar Burning Velocity of Dimethyl Ether-Air Premixed Mixtures", Fuel, 86, 2360-2366, (2007) https://doi.org/10.1016/j.fuel.2007.01.021
  9. K. S. Park and Y. D. Jo, "Incident Analysis of Bucheon LPG Filling Station Pool Fire and BLEVE", Journal of Hazardous Materials, 137, 62-67, (2006) https://doi.org/10.1016/j.jhazmat.2006.01.070
  10. T. Mogi and S. Horiguchi, "Explosion and Detonation Characteristics of Dimethyl Ether", J. of Hazardous Materials, 164, 114-119, (2009) https://doi.org/10.1016/j.jhazmat.2008.07.133

Cited by

  1. Quantitative risk analysis of fire and explosion on the top-side LNG-liquefaction process of LNG-FPSO vol.92, pp.5, 2014, https://doi.org/10.1016/j.psep.2014.04.011
  2. Analysis of Gas Explosion Consequence Models for the Explosion Risk Control in the New Gas Energy Filling Stations vol.52, pp.22, 2013, https://doi.org/10.1021/ie302511d
  3. The Role of Process Systems Engineering for Sustainability in the Chemical Industries vol.51, pp.2, 2013, https://doi.org/10.9713/kcer.2013.51.2.221
  4. Consequence Analysis of Hydrogen Blended Natural Gas(HCNG) using 3D CFD Simulation vol.17, pp.5, 2013, https://doi.org/10.7842/kigas.2013.17.5.15
  5. CFD 툴을 활용한 패키지형 수소충전시스템의 안전성 향상 연구 vol.30, pp.3, 2011, https://doi.org/10.7316/khnes.2019.30.3.243