DOI QR코드

DOI QR Code

Characterization of an Indigenous Antimicrobial Substance-producing Paenibacillus sp. BCNU 5011

항균물질을 생산하는 토착 미생물 Paenibacillus sp. BCNU 5011의 특성화

  • Choi, Hye-Jung (Interdisciplinary Program in Biotechnology and Department of Biology, Changwon National University) ;
  • Kim, Ya-Ell (Interdisciplinary Program in Biotechnology and Department of Biology, Changwon National University) ;
  • Bang, Ji-Hun (Interdisciplinary Program in Biotechnology and Department of Biology, Changwon National University) ;
  • Kim, Dong-Wan (Department of Microbiology, Changwon National University) ;
  • Ahn, Cheol-Soo (Cho-A Pharm. Co, LTD.) ;
  • Jeong, Young-Kee (Department of Biotechnology, Dong-A University) ;
  • Joo, Woo-Hong (Interdisciplinary Program in Biotechnology and Department of Biology, Changwon National University)
  • 최혜정 (창원대학교 생명공학협동과정, 생물학과) ;
  • 김야엘 (창원대학교 생명공학협동과정, 생물학과) ;
  • 방지훈 (창원대학교 생명공학협동과정, 생물학과) ;
  • 김동완 (창원대학교 미생물학과) ;
  • 안철수 (조아제약(주)) ;
  • 정영기 (동아대학교 생명공학과) ;
  • 주우홍 (창원대학교 생명공학협동과정, 생물학과)
  • Received : 2011.03.09
  • Accepted : 2011.03.28
  • Published : 2011.04.30

Abstract

Strain BCNU 5011 was isolated from forest soil samples collected in the Taebaek mountain in the Gangwon province, Korea. The biochemical, physiological and 16S rRNA sequence analysis strongly indicated that this isolate was most closely related to Paenibacillus polymyxa. A maximum production level of antimicrobial substances of Paenibacillus sp. BCNU 5011 was achieved under aerobic incubation at $30^{\circ}C$ for 3 days in SST broth.Paenibacillus sp. BCNU 5011 showed a broad spectrum of activity against Gram positive and Gram negative bacteria, including methicllinresistant Staphylococcus aureus (MRSA). Paenibacillus sp. BCNU 5011 was also shown to inhibit the growth of different potential human pathogenic bacteria and fungi in vitro. Peptide extract showed better antimicrobial activity than solvent extracts. But active antimicrobial compounds might be included in both peptide extract and solvent extracts. Further separation, purification and identification of active principles leads project to develop antimicrobial agents and anti-MRSA agents.

Keywords

References

  1. Jung, J. H. and H. C. Chang (2009) Bacillus polyfermenticus CJ9, Isolated from meju, showing antifungal and antibacterial activities. Kor. J. Microbiol. Biotechnol. 37: 340-349.
  2. Favre, B., B. Hofbauer, K. S. Hildering, and N. S. Ryder (2003) Comparison of in vitroactivities of 17 antifungal drugs against a panel of 20 dermatophytes by using a microdilution assay. J. Clin. Microbial. 41: 4817-4819. https://doi.org/10.1128/JCM.41.10.4817-4819.2003
  3. Gupta, A. K., Y. Kohli, A. Ki, J. Faergemann, and R. C. Summerbell (2000) In vitro susceptibility of the seven Malassezia species to ketoconazole, voriconazol, itaconazol and terbinafine. Br. J. Dermatol. 142: 758-765. https://doi.org/10.1046/j.1365-2133.2000.03294.x
  4. Pfaller, M. A. and W. L. Yu (2001) Antifungal susceptibility testing. New technology and clinical applications. Infect. Dis. Clin. North Am. 15: 1227-1261. https://doi.org/10.1016/S0891-5520(05)70192-6
  5. Choi, H. J., U. H. Yang, Y. E. Kim, Y. H. Choi, C. S. Ahn, Y. K. Jeong, D. W. kim, and W. H. Joo (2010) Antifungal activity of Bacillus sp. BCNU 2003 against the human pathogenic fungi. J. Life Sci. 20: 269-274. https://doi.org/10.5352/JLS.2010.20.2.269
  6. Choi, H. J., C. S. Ahn, Y. K. Jeong, D. W. kim, and W. H. Joo (2010) Antifungal activity of Bacillus sp. BCNU 2002 against the human pathogens. Kor. J. Biotechnol. Bioeng. 25: 123-129.
  7. Ash, C., J. A. E. Farrow, S. Wallbank, and M. D. Collins (1991) Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit-ribosomal RNA sequences. Lett. Appl. microbiol. 13: 202-206.
  8. Beatty, P. H. and S. E. Jensen (2002) Paenibacillus polymyxa produces fusaricidin-type antifungal antibiotic active against Leptosphaeria maculans, the causative agent of blackleg disease of canola. Can J. Microbiol. 48: 159-169. https://doi.org/10.1139/w02-002
  9. Kajimura, Y. and M. Kaneda (1997) Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J. Antibiot. 50: 220-228. https://doi.org/10.7164/antibiotics.50.220
  10. Kurusu, K., K. Ohba, T. Arai, and K. Fukushima (1987) New peptide antibiotics LI-F03, F04, F05, F07, and F08, produced by Bacillus polymyxa. I. Isolation and characterization. J. Antibiot. 40: 1506-1514. https://doi.org/10.7164/antibiotics.40.1506
  11. Nakajima, N., S. Chihara, and Y. Koyama (1972) A new antibiotic, Gatavalin I. Isolation and characterization. J. Antibiot. 25: 243-247. https://doi.org/10.7164/antibiotics.25.243
  12. Govaerts, C., J. Orwa, A. Van Schepdael, E. Roets, and J. Hoogmartens (2002) Characterization of polypeptide antibiotics of the polymyxin series by liquid chromatography electrospray ionization ion trap tandem mass spectrometry. J. Pept. Sci. 8: 45-55. https://doi.org/10.1002/psc.367
  13. He, Z., D. Kisla, L. Zhang, C. Yuan, K. B. Green-Church, and A. E. Yousef (2007) Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl. Environ. Microbiol. 73: 168-178. https://doi.org/10.1128/AEM.02023-06
  14. Chung, Y. R., C. H. Kim, I. Hwang, and J. Chun (2000) Paenibacillus koreensis sp. nov. a new species that produces aniturin-like antifungal compound. Int. J. Syst. Evol. Microbiol. 50: 1495-1500. https://doi.org/10.1099/00207713-50-4-1495
  15. Martin, N. I., H. Hu, M. M. Moake, J. J. Churey, R. Whittal, R. W. Worobo, and J. C. Vederas (2003) Isolation, structural characterization, and properties of mattacin (polymyxin M), a cyclyc peptide antibiotic produced by Paenibacillus kobensis M. J. Biol. Chem. 278: 13124-13132. https://doi.org/10.1074/jbc.M212364200
  16. Pedersen, M. F., J. F. Pedersen, and P. O. Adsen (1971) A clinical and experimental comparative study of sodium colistimethate and polymyxin B sulfate. Invest. Urol. 9: 234-237.
  17. Senturk, S. (2005) Evaluation of the anti-endotoxic effects of polymyxin-E (colistin) in dogs with naturally occurred endotoxic shock. J. Vet. Pharm. Ther. 28: 57-63. https://doi.org/10.1111/j.1365-2885.2004.00634.x
  18. Falagas, M. E. and S. K. Kasiakou (2006) Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit. Care. 10: R27. https://doi.org/10.1186/cc3995
  19. Tankovic, J., P. Legrand, G. De Gatines, V. Chemineau, C. Brun- Buisson, and J. Duval (1994) Characterization of a hospital outbreak of imipenemresistant Acinetobacter baumannii by phenotypic and genotypic typing methods. J. Clin. Microbiol. 32: 2677-2681.
  20. Sneath, P. H. A. (1986) Endospore-forming gram-positive rods and cocci, pp. 1104-1139. In: P. H. A. Sneath, N. S. Mair, M. E. Sharpe, J. G. Holt (eds.). Bergey's Manual of Systematic Bacteriology, Vol. 2, Williams & Wilkins, Baltimore.
  21. Cho, Y. S., N. L. Schiller, H. Y. Kahng, and K. H. Oh (2007) Cellular responses and proteomic analysis of Escherichia coli exposed to green tea polyphenols. Curr. Microbiol. 53: 501-506.
  22. Saito, N. and M. Nei (1987) The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 79: 426-434.
  23. Thompson, J. D., D. G. Higgins, and T. J. Gibson (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nuclic. Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
  24. Perez, C., M. Pauli, and P. Bazerque (1990) An antibiotics assay by agar well diffusion method. Acta. Biol. Med. Exp. 15: 113-115.
  25. Whipps, J. M. (1987) Effect of media on growth and interactions between a range of soil-born glass-house pathogens and antagonistic fungi. New Phytol. 107: 127-142. https://doi.org/10.1111/j.1469-8137.1987.tb04887.x
  26. Seldin, L., F. Silva de Azevedo, D. S. Alviano, C. S. Alviano, and M. C. de Freire Bastos (1999) Inhibitory activity of Paenibacillus polymyxa SCE2 against human pathogenic micro-organisms. Lett. Appl. Microbiol. 28: 423-427. https://doi.org/10.1046/j.1365-2672.1999.00563.x
  27. Wang, Z. W. and X. L. Liu (2008) Medium optimization for antifungal active substances production from a newly isolated Paenibacillus sp. using response surface methodology. Bioresource Technol. 99: 8245-8251. https://doi.org/10.1016/j.biortech.2008.03.039
  28. Fortes, T. O., D. S. Alviano, Gl. Tupinamb, T. S. Padro'n, A. R. Antoniolli, C. S. Alviano, and L. Seldin (2008) Production of an antimicrobial substance against Cryptococcus neoformans by Paenibacillus brasilensis Sa3 isolated from the rhizosphere of Kalanchoe brasiliensis. Microbiol. Res. 163: 200-207. https://doi.org/10.1016/j.micres.2006.05.003
  29. Selim, S., J. Negrel, C. Govaerts, S. Gianinazzi, and D. Van Tuinen (2005) Isolation and partial characterization of antagonistic peptides produced by Paenibacillussp. strain B2 isolated from the sorghum mycorrhizosphere. Appl. Environ. Microbiol. 71: 6501-6507. https://doi.org/10.1128/AEM.71.11.6501-6507.2005

Cited by

  1. The Antibacterial Activity Against Fish Pathogen of Paenibacillus sp. MK-11 Isolated from Jeju Coast vol.24, pp.8, 2014, https://doi.org/10.5352/JLS.2014.24.8.880
  2. Difference of Catechins Extracted Level when Fermented Sun-dried Salt and Green Tea vol.12, pp.11, 2012, https://doi.org/10.5392/JKCA.2012.12.11.278
  3. Development of Practical Media and Fermentative Technique for Mass Cultivation from Agricultural and Livestock Microorganism vol.56, pp.None, 2011, https://doi.org/10.29335/tals.2018.56.23