DOI QR코드

DOI QR Code

The Study of Steam Reforming for Model Bioigas using 3D-IR Matrix Burner Reformer

3D-IR Matrix 버너 개질기를 활용한 모사 바이오가스 수증기 개질 연구

  • Lim, Mun-Sup (BK21 Team for Hydrogen Production.Department of Environmental Engineering, Chosun University) ;
  • Chun, Young-Nam (BK21 Team for Hydrogen Production.Department of Environmental Engineering, Chosun University)
  • 임문섭 (조선대학교 공과대학 환경공학과.BK21 바이오가스기반수소생산 사업팀) ;
  • 전영남 (조선대학교 공과대학 환경공학과.BK21 바이오가스기반수소생산 사업팀)
  • Received : 2011.01.21
  • Accepted : 2011.02.18
  • Published : 2011.02.28

Abstract

The use of biogas as an energy source reduces the chance of possible emission of two greenhouse gases, $CH_4$ and $CO_2$, into the atmosphere at the same time. Its nature of being a reproducible energy source makes its use even more attractive. This research if for the hydrogen production through the steam reforming of the biogas. The biogas utilized 3D-IR matrix burner in which the surface combustion is applied. The nickel catalyst was used inside a reformer. Parametric screening studies were achieved as Steam/Carbon ratio, biogas component ratio, Space velocity and Reformer temperature. When the condition of Steam/Carbon ratio, $CH_4/CO_2$ ratio, Space velocity and Refomer temperature were 3.25, 60%:40%, 19.32L/$g{\cdot}hr$ and $700^{\circ}C$ respectively, the hydrogen concentration and methane conversion rate were showed maximum values. Under the condition mentioned above, $H_2$ concentration was 73.9% and methane conversion rate was 98.9%.

Keywords

References

  1. Y. N. Chun, Y. C. Yang, K. Yoshikawa, "Hydrogen generation from biogas reforming using a gliding arc plasma-catalyst reformer", Catalysis today, Vol. 148, 2009, pp. 283-289. https://doi.org/10.1016/j.cattod.2009.09.019
  2. M. Ashrafi, T. Pröll, C. Pfeifer, and H. Hofbauer, "Experimental study of model biogas catalytic steam reforming: 1. Thermodynamic optimization", Energy & Fuels, Vol. 22, 2008, pp. 4182-4189. https://doi.org/10.1021/ef800081j
  3. P. Beckhaus, A. Heinzel, J. Mathiak, and J. Roes, "Dynamic of $H_{2}$ production by steam reforming", J. Power Sources, Vol. 127, 2004, pp. 294-299. https://doi.org/10.1016/j.jpowsour.2003.09.026
  4. S. G. Wang, Y. W. Li, J. X. Lu, M. Y. He, and H. Jiao, "A detailed mechanism of thermal $CO_{2}$ reforming of $CH_{4}$", J. Molecular Structure, Vol. 673, 2004, pp. 181-189. https://doi.org/10.1016/j.theochem.2003.12.013
  5. A. E. Lutz, R. W. Bradshaw, L. Bromberg, and A. Rabinovich, "Thermodynamic analysis of hydrogen production by partial oxidation reforming", Int. J. Hydrogen Energy, Vol. 29, 2004, pp. 809-816. https://doi.org/10.1016/j.ijhydene.2003.09.015
  6. 김성천, 전영남, "3상 교류 부채꼴 방전을 이용한 메탄으로부터 수소 생산", 한국수소 및 신에너지학회, Vol. 18, No. 2, 2007, pp. 132-139.
  7. T. Takeno, K. Sato, "An excess enthalpy flame theory", Combustion Sience and Technology, Vol. 20, 1979, pp. 73-84. https://doi.org/10.1080/00102207908946898
  8. A. I. Bakry, "Stabilized Premixed Combustion within Atmospheric Gas Porous Inert Medium (PIM) Burner", International Conference on Energy and Environment 2006, 28-30 August2006, pp. 1-9.
  9. G. Petitpas, J. D. Rollier, A. Darmon, J. Gonzalez- Aguilar, R. Metkemeijer, L. Fulcheri, "A comparative study of non-thermal plasma assisted reforming technologies," International Journal of Hydrogen Energy, Vol. 32, No. 14, 2007, pp. 2848-2867. https://doi.org/10.1016/j.ijhydene.2007.03.026
  10. G. Kolios, A. Gritsch, A. Morillo, U. Tuttlies, J. Bernnat, F. Opferkuch, G. Eigenberger, "Heatintegrated reactor concepts for catalytic refoming and automotive exhaust purification", Applied catalysis B, Vol. 70, 2007, pp. 16-30. https://doi.org/10.1016/j.apcatb.2006.01.030
  11. D. G. Avraam, T. I. Halkides, D. K. Liguras, O. A. Bereketidou, M. A. Goula, "An experimental and theoretical approach for the biogas steam reforming reaction", International Journal of Hydrogen Energy, Vol. 35, 2010, pp. 9818-9827. https://doi.org/10.1016/j.ijhydene.2010.05.106
  12. P. Kolbitsch, C. pfeifer, H. Hofbauer, "Catalytic steam reforming of model biogas", Fuel, Vol. 87, 2008, pp. 701-706. https://doi.org/10.1016/j.fuel.2007.06.002