DOI QR코드

DOI QR Code

$Cs^+$치환에 따른 수전해용 공유가교 SPEEK/HPA 복합막의 안정화

Stabilization of Covalently Cross-Linked SPEEK/Cs-Substituted HPA Composite Membranes for Water Electrolysis

  • 투고 : 2011.01.18
  • 심사 : 2011.02.18
  • 발행 : 2011.02.28

초록

To improve the mechanical properties, such as durabilities and antioxidative characteristics, the covalently cross-linked (CL-) SPEEK (sulfonated polyether ether ketone)/Cs-substituted HPA (heteropoly acid) organic-inorganic composite membranes (CL-SPEEK/Cs-HPAs), have been intensively investigated. The composite membrane were prepared by blending cesium-substituted HPAs (Cs-HPAs), including tungstophosphoric acid (TPA), molybdophosphoric acid (MoPA), and tungstosilicic acid (TSiA) with cross-linking agent content of 0.01 mL. And composite electrolytes composed of Cs-HPAs, prepared by immersion (imm.) and titration (titr.) methods to increase the stability of HPAs in water, were applied to polymer electrolyte membrane electrolysis (PEME). As a result, the proton conductivity of Cs-substituted composite membranes increased rapidly over $60^{\circ}C$ but mechanical properties, such as tensile strength, decreased in accordance with added Cs content. The bleeding-out of Cs-TPA membranes by titration method (50 vol.% Cs) decreased steadily to 2.15%. In the oxidative stability test by Fenton solution, the durability of membranes with Cs-HPA significantly increased. In case of CL-SPEEK/ Cs-TPA membrane, duration time increased more than 1200 hours. It is expected that even though CL-SPEEK/Cs-MoPA membrane shows the high proton conductivity, electrocatalytic activity and cell voltage of 1.80 V for water electrolysis, the CL-SPEEK/Cs-TPA (imm.) is more suitable as an alternative membrane in real system with the satisfactory proton conductivity, mechanical properties, anti-oxidative stability and cell voltage of 1.89 V.

키워드

참고문헌

  1. P. Millet, F. Andolfatto and R. Durand, "Design and performance of a solid polymer electrolyte water electrolyzer", Int. J. Hydrogen Energy, Vol. 21, No. 2, 1996, pp. 87-93.
  2. P. W. T. Lu and J. H. Russel, "Advances in Water Electrolysis Technology with Emphasis on Use of the Solid Polymer Electrolyte", J. Appl. Electrochem., Vol. 9, No. 3, 1979, pp. 269-283. https://doi.org/10.1007/BF01112480
  3. 황용구, "수전해용 SPEEK 전해질막의 제조시 HPA 첨가제의 영향", 박사학위논문. 명지대학교 대학원, 용인, 2008, pp. 48-50.
  4. I. Y. Jang, O. H. Kweon, K. E. Kim, G. J. Hwang, S. B. Moon, A. S. Kang, "Covalently cross-linked sulfonated poly(ether ether ketone)/ tungstophosphoric acid composite membranes for water electrolysis application", J. Power Sources, Vol. 181, No. 1, 2008, pp. 127-134. https://doi.org/10.1016/j.jpowsour.2008.03.022
  5. V. Ramani, H. R. Kunz and J. M. Fenton, "Stabilized heteropolyacid/Nafion composite membranes for elevated temperature/low relative humidity PEFC operation", Electrochim. Acta, Vol. 50, No. 5, 2005, pp. 1181-1187. https://doi.org/10.1016/j.electacta.2004.08.015
  6. S. Y. Oh, T. Yoshida, G. Kawamura, H. Muto, M. Sakai and A. Matsuda, "Proton conductivity and fuel cell property of composite electrolyte consisting of Cs-substituted heteropoly acids and sulfonated poly(ether-ether ketone)", J. Power Sources, Vol. 195, No. 18, 2010, pp. 5822-5828. https://doi.org/10.1016/j.jpowsour.2010.01.063
  7. S. Y. Oh, T. Yoshida, G. Kawamura, H. Muto, M. Sakai and A. Matsuda, "Composite electrolytes composed of Cs-substituted phosphotungstic acid and sulfonated poly(ether-ether ketone) for fuel cell systems", Mater. Sci. Eng. B, Vol. 173, 2010, pp. 260-266. https://doi.org/10.1016/j.mseb.2010.03.002
  8. H. Dogan, T. Y. Inan, E. Unveren and M. Kaya, "Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone(SPEEK) composite membranes for fuel cell applications", Int. J. Hydrogen Energy, Vol. 35, No. 15, 2010, pp. 7784-7795. https://doi.org/10.1016/j.ijhydene.2010.05.045
  9. P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, and S. Kaliaguine, "Synthesis and Characterization of Sulfonated Poly(ether ether ketone) for Proton Exchange Membranes", J. Membr. Sci, Vol. 229, 2004, pp. 95-106. https://doi.org/10.1016/j.memsci.2003.09.019
  10. Y. Zhang, H. Zhang, C. Bi and X. Zhu, "An inorganic/organic self-humidifying composite membranes for proton exchange membrane fuel cell application", Electrochim. Acta, Vol. 53, No. 12, 2008, pp. 4096-4103. https://doi.org/10.1016/j.electacta.2007.12.045
  11. S. L. Rhoden and C. A. Linkous, "The optimization of SPEEK membranes using Phos- PHotungstic acid as a dopant", ECS Trans., Vol. 16, No. 2, 2008, pp. 1461-1469.
  12. C. Arnold and R. A. Assink, "Structure-Property Relationships of Anionic Exchange Membranes for Fe/Cr Redox Storage Batteries", J. Appl. Polym. Sci., Vol. 29, No. 7, 1984, pp. 2317-2330. https://doi.org/10.1002/app.1984.070290708
  13. F. G. Helfferich, "Ion Exchange", MaGraw- Hill Book Co., New York, 1962.
  14. N. Li, Z. Cui, S. Zhang, S. Li and F. Zhang, "Preparation and evaluation of a proton exchange membrane based on oxidation and water stable sulfonated polyimides", J. Power Sources, Vol. 172, 2007, pp. 511-519. https://doi.org/10.1016/j.jpowsour.2007.07.069
  15. M. L. Ponce, "Organic-Inorganic hybrid membranes with heteropolyacids for DMFC applications", Ph. D. Dissertation, University of Hamburg, Hamburg, 2004.
  16. N. Fujiwara, K. Yasuda, T. Ioroi, Z. Siroma and Y. Miyazaki, "Preparation of platinum- ruthenium onto solid polymer electrolyte membrane and the application to a DMFC anode", Electrochim. Acta, Vol. 47, 2002, pp. 4079-4084. https://doi.org/10.1016/S0013-4686(02)00414-0
  17. 장두영, 장인영, 권오환, 김경언, 황갑진, 강안수, "함침-환원법으로 제조된 수전해용 Pt-SPE 전극촉매의 특성", 한국수소 및 신에너지학회 논문집, Vol. 17, No. 4, 2006, pp. 440-447.
  18. Y. S. Kim, F. Wang, M. Hickner, T. A. Zawodzinski, and J. E. McGrath, "Fabrication and Characterization of Heteropolyacid/ Directly Polymerized Sulfonated Poly(arylene ether sulfone) Copolymer Composite Membranes for Higher Temperature Fuel Cell Applications", J. Membr. Sci., Vol. 212, 2003, pp. 263-282. https://doi.org/10.1016/S0376-7388(02)00507-0
  19. G. D. Yadav and N. S. Asthana, "Selective decomposition of cumene hydroperoxide into phenol and acetone by a novel cesium substituted heteropolyacid on clay", Appl. Catalysis A: General, Vol. 244, No. 2, 2003, pp. 341-357. https://doi.org/10.1016/S0926-860X(02)00605-1
  20. I. Y. Jang, O. H. Kweon, K. E. Kim, G. J. Hwang, S. B. Moon, A. S. Kang, "Application of polysulfone (PSf)-and polyether ether ketone (PEEK)-tungstophosphoric acid (TPA) composite membranes for water electrolysis", J. Membr. Sci., Vol. 322, No. 1, 2008, pp. 154-161. https://doi.org/10.1016/j.memsci.2008.05.028
  21. S. M. J. Zaidi, S. D. Mikhailenko, G. P. Robertson, and M. D. Guiver, "Proton Conducting Composite Membrane from Polyether ether ketone and Hetero-polyacids for Fuel Cell Applications", J. Membr. Sci., Vol. 173, No. 1, 2000, pp. 17-34. https://doi.org/10.1016/S0376-7388(00)00345-8
  22. K. M. Lee, J. Y. Woo, B. C. Jee, Y. K. Hwang, C. H. Yun, J. H. Chung, S. B. Moon and A. S. Kang, "Effect of Cross-Linking Agent and Heteropolyacid (HPA) Contents on Physicochemical Characteristics of Covalently Cross-Linked Sulfonated Poly(Ether Ether Ketone)/HPAs Composite Membranes for Water Electrolysis", J. Ind. Eng. Chem., in press.
  23. S. Guhan and D. Sangeetha, "Evaluation of sulfonated poly(ether ether ketone) silicotungstic acid composite membranes for fuel cell applications", Int. J. Polym. Mater., Vol. 58, No. 2, 2009, pp. 87-98.
  24. P. Genova-Dimitrova, B. Baradie, D. Foscallo, C. Poinsignon and J. Y. Sanchez, "Ionomeric membranes for proton exchange membrane fuel cell(PEMFC): sulfonated polysulfone associated with phosphatoanimonic acid", J. Membr. Sci., Vol. 185, 2001, pp. 59-71. https://doi.org/10.1016/S0376-7388(00)00634-7
  25. L. Li, J. Zhang and Y. Wang, "Sulfonated Poly (ether ether ketone) Membranes for Direct Methanol Fuel Cell", J. Membr. Sci., Vol. 226, 2003, pp. 159-167. https://doi.org/10.1016/j.memsci.2003.08.018