DOI QR코드

DOI QR Code

Study on Separation Characteristics of Flue Gas Using Hydroquinone Clathrate Compounds

하이드로퀴논 크러스레이트를 이용한 배가스 분리 특성 연구

  • Lee, Jong-Won (Department of Environmental Engineering, Kongju National University) ;
  • Choi, Ki-Jong (Department of Environmental Engineering, Kongju National University)
  • Published : 2011.12.01

Abstract

An organic substance, hydroquinone is used to form clathrate compounds in order to identify separation characteristics of carbon dioxide in flue gas. Formed samples were analyzed by means of the solid-state $^{13}C$ nuclear magnetic resonance (NMR) and Raman spectroscopic methods to examine enclthration behaviors of guest species. In addition, elemnetal analysis was also performed in order to evaluate separation efficiency of $CO_2$ in a quantitative way. Based on the experimental results obtained, $CO_2$ molecules are found to be captured into the clathrate compound more readily than $N_2$ molecules. Moreover, because such preferential enclathration is even more significant at low pressure conditions, $CO_2$ separation/recovery from flue gas can be achieved with minimizing additional energy cost for the technique. Experimental results obtained in this study can provide useful information on separation techniques of flue gas or selective separation of gas mixtures in the future.

배가스로부터 이산화탄소의 분리 특성을 파악하기 위해 유기 화합물인 하이드로퀴논을 이용하여 크러스레이트 화합물을 형성하였다. 형성된 크러스레이트 화합물은 고체 NMR 및 라만 분광법을 이용하여 기체의 포집 거동을 확인하였으며, 기체 분리 효율을 계산하기 위하여 원소 분석기를 통한 정량분석도 함께 수행하였다. 분석 결과 배가스에 포함된 이산화탄소는 질소에 비해 동일한 조건에서 크러스레이트 화합물 내로 더 잘 포집되는 것으로 확인되었다. 또한 다양한 압력에서 형성된 시료들을 분석한 결과, 이러한 이산화탄소의 선택적 포집 특성이 매우 낮은 압력에서도 뚜렷한 것으로 확인되어 추가적인 에너지 소모를 적게 하면서도 배가스로부터 이산화탄소를 대규모로 분리/회수하는 것이 가능할 것이라 판단된다. 본 연구에서 얻어진 결과는 향후 배가스에 대한 분리 응용 기술이나 혼합 가스의 선택적 분리와 같은 분야에서 중요한 정보를 제공할 수 있을 것으로 기대된다.

Keywords

References

  1. Soon, W., Baliunas, S. L., Robinson, A. B. and Robinson, Z. W. "Environmental Effects of Increased Atmospheric Carbon Dioxide," Clim. Res., 13, 149-164(1999). https://doi.org/10.3354/cr013149
  2. Ida, J.-I. and Lin, Y. S., "Mechanism of High-temperature $CO_{2}$Sorption on Lithium Zirconate," Environ. Sci. Technol., 37, 1999-2004(2003). https://doi.org/10.1021/es0259032
  3. Kang, S.-P. and Lee, H., "Recovery of $CO_{2}$ from Flue Gas Using Gas Hydrate: Thermodynamic Verification Through Phase Equilibrium Measurements," Environ. Sci. Technol., 34, 4397-4400 (2000). https://doi.org/10.1021/es001148l
  4. Kim, D. Y. and Lee, H., "Spectroscopic Identification of the Mixed Hydrogen and Carbon Dioxide Clathrate Hydrate," J. Am. Chem. Soc., 127, 9996-9997(2005). https://doi.org/10.1021/ja0523183
  5. Seo, Y. T. and Lee, H., "Structure and Guest Distribution of the Mixed Carbon Dioxide and Nitrogen Hydrates as Revealed by X-ray Diffraction and $^{13}C$ NMR Spectroscopy," J. Phys. Chem. B, 108, 530-534(2004). https://doi.org/10.1021/jp0351371
  6. Yoon, J. H., Kawamura, T., Ohtake, M., Takeya, S., Komai, T., Yamamoto, Y., Emi, H., Kohara, M., Tanaka, S., Takano, O. and Uchida, K., "Highly Selective Encaging of Carbon Dioxide Molecules in the Mixed Carbon Dioxide and Nitrogen Hydrate at Low Temperatures," J. Phys. Chem. B, 110, 17595-17599(2006). https://doi.org/10.1021/jp0618328
  7. Kumar, R., Englezos, P., Moudrakovskr, I. L. and Ripmeester, J. A. "Structure and Composition of $CO_{2}/H_{2}$ and $CO_{2}/H_{2}/C_{3}H_{8}$ Hydrate in Relation to Simultaneous $CO_{2}$ Capture and $H_{2}$ Production," AIChE J., 55, 1584-1594(2009). https://doi.org/10.1002/aic.11844
  8. Linga, P., Kumar, R. and Englezos, P., "Gas Hydrate Formation from Hydrogen/Carbon Dioxide and Nitrogen/Carbon Dioxide Gas Mixtures," Chem. Eng. Sci., 62, 4268-4276(2007). https://doi.org/10.1016/j.ces.2007.04.033
  9. Ripmeester, J. A., "Application of Solid State $^{13}C$ NMR to the Study of Polymorphs, Clathrates and Complexes," Chem. Phys. Lett., 74, 536-538(1980). https://doi.org/10.1016/0009-2614(80)85269-9
  10. Lee, J.-W., Lee, Y., Takeya, S., Kawamura, T., Yamamoto, Y., Lee, Y.-J. and Yoon, J.-H., "Gas-Phase Synthesis and Characterization of $CH_{4}$-Loaded Hydroquinone Clathrates," J. Phys. Chem. B, 114, 3254-3258(2010). https://doi.org/10.1021/jp911822e
  11. Kubinyi, M., Billes, F., Grofcsik, A. and Keresztury, G., "Vibrational Spectra and Normal Coordinate Analysis of Phenol and Hydroquinone," J. Mol. Struct., 266, 339-344(1992). https://doi.org/10.1016/0022-2860(92)80089-Z
  12. Uchida, T., Takagi, A., Kawabata, J., Mae, S. and Hondoh, T. "Raman Spectroscopic Analyses on the Growth Process of $CO_{2}$ Hydrates," Energy Convers. Mgmt., 36, 547-550(1995). https://doi.org/10.1016/0196-8904(95)00064-K
  13. Musso, M., Matthai, F., Keutel, D. and Oehme, K.-L., "Critical Raman Line Shape Behavior of Fluid Nitrogen," Pure Appl. Chem., 76, 147-155(2004). https://doi.org/10.1351/pac200476010147