DOI QR코드

DOI QR Code

Synthesis of Low Concentration of NaOH Solution using $Na^+$ ion in the Concentrated Water from Membrane Separation Process

분리막 농축수에 포함된 Na를 이용한 저농도 NaOH 용액의 합성

  • Lee, Yoon-Ji (Department of Environmental Engineering, Kyungpook National University) ;
  • Park, Youn-Jin (Department of Environmental Engineering, Kyungpook National University) ;
  • Choi, Jeong-Hak (Environment Research Team, Daegu-Gyeongbuk Development Institute) ;
  • Shin, Won-Sik (Department of Environmental Engineering, Kyungpook National University) ;
  • Choi, Sang-June (Department of Environmental Engineering, Kyungpook National University) ;
  • Chon, Uong (Hybrid Materials Research Department, Research Institute of Industrial Science & Technology)
  • Published : 2011.12.01

Abstract

Concentrated water discharged from seawater desalination process contains a high concentration of $Na^+$ ion. Electrolysis was applied to synthesize NaOH solution from the highly concentrated NaCl solution. The effect of various operating parameters of composited laboratory-scale chlor-alkali (CA) membrane cell was investigated. The operating parameters such as membrane types (CIMS and Nafion membranes), pretreatment of the membrane, flow rate (73 mL/min~200 mL/min), initial $Na^+$ ion concentration (1.5 M, 3M and 5 M) and current (1.5A and 2A) were evaluated. It was observed that synthesis efficiency of NaOH solution with CIMS membrane was higher than that with Nafion membrane, but the durability of CIMS membrane on $Cl_2$ gas was poor. The synthesis efficiency of NaOH solution increased with increasing initial $Na^+$ ion concentration and current, while the efficiency decreased with increasing flow rate using Nafion membrane.

역삼투막을 이용한 해수담수화 과정에서 발생하는 농축수 내에는 고농도의 $Na^+$ 이온이 포함되어 있으며, 이를 경제성 있는 NaOH 용액으로 회수하기 위해 전기분해를 적용하였다. 실험실 규모의 전기분해장치를 구성하여 실험조건의 변화에 따른 NaOH 용액의 합성농도를 비교하였다. 이온교환막의 종류(CIMS 막, Nafion 막), 이온교환막의 전처리 유무, 농축수의 유입 유속(73 mL/min ~ 200 mL/min), 모의 농축수의 농도(1.5 M ~ 5 M), 전류(1.5 A, 2 A) 등의 인자를 변화시켜 전기분해를 수행한 결과, CIMS 막은 Nafion 막에 비하여 NaOH 용액의 합성효율은 뛰어나지만, 장시간운전 이후에 염소가스에 대한 내구성이 떨어졌다. 또한, 모의 농축수의 $Na^+$ 이온농도와 전류가 높을수록 NaOH 용액의 합성효율은 증가하였으나, 모의 농축수의 유입 유속이 낮을수록 합성효율은 증가하였다.

Keywords

References

  1. Khawaji, A. D., Kutubkhanah, I. K. and Wie, J. M., "Advances in Seawater Desalination Technologies", Desalination, 221, 47-69 (2008). https://doi.org/10.1016/j.desal.2007.01.067
  2. Jeppesen, T., Shu, L., Keir, G. and Jegatheedan, V., "Metal Recovery from Reverse Osmosis Concentrate," J. Cleaner Production, 17, 703-707(2009). https://doi.org/10.1016/j.jclepro.2008.11.013
  3. Hamzaoui, A. H., M'nif, A., Hammi, H. and Rokbani, R., "Contribution to the Lithium Recovery from Brine, " Desalination, 158, 221-224(2003). https://doi.org/10.1016/S0011-9164(03)00455-7
  4. Mohammadesmaeili, F., Badr, M. K., Abbaszadegan, M. and Fox, P., "Mineral Recovery from Inland Reverse Osmosis Concentrate Using Isothermal Evaporation", Water Res., 44, 6021-6030 (2010). https://doi.org/10.1016/j.watres.2010.07.070
  5. Martinetti, C. R., Childressa, A. E. and Cath, T. Y., "High RecovFig. 7. XRD patten of synthetic NaOH powder. ery of Concentrated RO Brines Using Forward Osmosis and Membrane Distillation", J. Membr. Sci., 331, 31-39(2009). https://doi.org/10.1016/j.memsci.2009.01.003
  6. Kiros, Y., Pirjamali, M. and Bursel, M., "Oxygen Reduction Electrodes for Electrolysis in Chlor-alkali Cells," Electrochim. Acta, 51, 3346-3350(2006). https://doi.org/10.1016/j.electacta.2005.10.024
  7. Madaeni, S. S. and Kazemi, V., "Treatment of Saturated brine in Chlor-alkali Process Using Membranes," Sep. Purif. Technol., 61, 68-74(2008). https://doi.org/10.1016/j.seppur.2007.09.028
  8. Hocking, M. B., Handbook of Chemical Technology and Pollution Control, 3rd ed., Oxford: Academic, 221-252(2005).
  9. Jalali, A. A., Mohammadi, F. and Ashrafizadeh, S. N., "Effects of Process Conditions on Cell Voltage, Current Efficiency and Voltage Balance of a Chlor-alkali Membrane Cell," Desalination, 237, 126-139(2009). https://doi.org/10.1016/j.desal.2007.11.056
  10. Desai, A. S., Chougule, V. D., Patil, S. S. and Sriram, M., "Chromatographic Determination of Anions in Industrial Salt and Sodium Chloride Brines Used in Chlor-alkali Industry," J. Chromatogr. A, 841, 55-62(1999). https://doi.org/10.1016/S0021-9673(99)00229-0
  11. Savari, S., Sachdeva, S. and Kumar, A, "Electrolysis of Sodium Chloride Using Composite Poly(styrene-co-divinylbenzene) Cation Exchange Membranes," J. Membr. Sci., 246-261, 310(2008).
  12. Xu, T., "Ion Exchange Membranes: State of Their Development and Perspective," J. Membr. Sci., 263, 1-29(2005). https://doi.org/10.1016/j.memsci.2005.05.002
  13. Almeida, S. H. and Kawano, Y., "Thermal Behavior of Nafion Membrane," J. Therm. Anal. Calorim., 58, 569-577(1999). https://doi.org/10.1023/A:1010196226309
  14. Richard, P. B. and Carsten, M., "Origins of Finite Transmission Lines for Exact Representations of Transport by the Nernst-Planck Equations for Each Charge Carrier", Electrochim. Acta., 44, 1999- 2018(1999). https://doi.org/10.1016/S0013-4686(98)00309-0
  15. Mohammadi, T., Razmi, A. and Sadrzadeh, M., "Effect of Operating Parameters on $Pb^{2+}$ Separation from Wastewater Using Electrodialysis," Desalination, 167, 379-385(2004). https://doi.org/10.1016/j.desal.2004.06.150

Cited by

  1. Rational Proteomic Analysis of a New Domesticated Klebsiella pneumoniae x546 Producing 1,3-Propanediol vol.12, pp.None, 2011, https://doi.org/10.3389/fmicb.2021.770109