DOI QR코드

DOI QR Code

Study on Ionic Conductivity and Crystallinity of PEO/PMMA Polymer Composite Electrolytes containing $TiO_2$ Filler

$TiO_2$ 필러를 포함하는 PEO/PMMA 고분자 복합체 전해질의 이온전도도 및 결정화도

  • Lee, Lyun-Gyu (Department of Chemical and Biochemical Engineering, Pusan National University) ;
  • Park, Soo-Jin (Department of Chemistry, Inha University) ;
  • Kim, Seok (Department of Chemical and Biochemical Engineering, Pusan National University)
  • 이륜규 (부산대학교 화공생명공학부) ;
  • 박수진 (인하대학교 화학과) ;
  • 김석 (부산대학교 화공생명공학부)
  • Published : 2011.12.01

Abstract

In this work, polymer composite electrolytes were prepared by a blend of poly(methyl methacrylate) (PMMA) and poly(ethylene oxide) (PEO) as a polymer matrix, propylene carbonate as a plasticizer, $LiClO_4$ as a salt, and by containing a different content of $TiO_2$, by using the solution casting method. The crystallinity and ionic conductivity of the polymer electrolytes was evaluated using X-ray diffraction(XRD) and AC impedance method, respectively. The morphology of composite electrolyte film was analyzed by SEM method. From the experimental results, by increasing the $TiO_2$ content, crystallinity of PEO was reduced, and ionic conductivity was increased. In particular, the ionic conductivity was dependent on the content of $TiO_2$ and showed the highest value 15 wt%. However, when $TiO_2$ content exceeds 15 wt%, the ionic conductivity was decreased. According to the surface morphology, the ionic conductivity was decreased because the polymer composite electrolytes showed a heterogenous morphology of fillers due to immiscibility or aggregation of the filler within the polymer matrix.

본 연구에서는 poly(ethylene oxide) (PEO)와 poly(methyl methacrylate) (PMMA) 블렌드를 고분자 매트릭스(matrix)로 사용하고, 가소제로propylene carbonate (PC), 리튬염인 $LiClO_4$, 그리고 서로 다른 함량의 세라믹 필러인 $TiO_2$를 이용하여 용액 캐스팅(solution casting)법에 의해 고분자 복합체 전해질 필름을 제조하였다. 고분자 전해질의 결정화도와 이온전도도는 각각, X선 회절분석기(XRD)와 AC임피던스법을 통해 분석하였고, 표면 형태학(morphology)을 조사하기 위해 주사전자현미경(SEM)으로 고찰하였다. 그 결과, $TiO_2$의 함량을 증가시킴으로써 PEO의 결정화 영역이 감소하였고, 이온전도도는 증가하였다. 특히 $TiO_2$의 함량이 15 wt%일 때 가장 높은 이온전도도가 관찰된 반면, 15 wt% 이상을 첨가한 경우, 이온전도도가 감소된 경향을 관찰할 수 있었다. 이는 표면 형태학를 통해 고분자와 필러간의 비혼합성 혹은 필러응집에 의해 불균일적인 형태학이 나타남으로써 이온전도도가 감소하는 현상을 확인할 수 있었다.

Keywords

References

  1. Schalkwijk, W. A. V. and Scrosati, B., Advances in Lithium Ion Batteries, Kluwer Academic, New York, 2002.
  2. Nazri, G. A. and Pistoia, G., Lithium Batteries, Kluwer Academic, New York, 2004.
  3. Moon, T., Kim, C. J. and Park, B. W., "Electrochemical Performance of Amorphous-silicon Thin Films for Lithium Rechargeable Batteries," J. Power Sources, 155, 391-394(2006). https://doi.org/10.1016/j.jpowsour.2005.05.012
  4. Dias, F. B., Plomp, L. and Veldhuis Jakobert, B. J., "Trends in Polymer Electrolytes for Secondary Lithium Batteries," J. Power Sources, 88, 169-191(2000). https://doi.org/10.1016/S0378-7753(99)00529-7
  5. Meyer, W. H., "Polymer Electrolytes for Lithium-ion Batteries," Adv. Mater, 10, 439-448(1998). https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
  6. Song, J. Y., Wang, Y. Y. and Wan, C. C., "Review of Gel-type Polymer Electrolytes for Lithium-ion Batteries," J. Power Sources, 77, 183-197(1999). https://doi.org/10.1016/S0378-7753(98)00193-1
  7. Fergus, J. W., "Ceramic and Polymeric Solid Electrolytes for Lithium-ion Batteries," J. Power Sources, 195, 4554-4569 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.076
  8. Shanmukaraj, D., Wang, G. X., Murugan, R. and Liu, H. K., "Ionic Conductivity and Electrochemical Stability of Poly(methylmethacrylate)- poly(ethylene oxide)blend-ceramic Fillers Composites," J. Phys. Chem. Solids, 69, 243-248(2008). https://doi.org/10.1016/j.jpcs.2007.08.072
  9. Kim, S., Hwang, E. J., Lee, S. G., Lee, J. R. and Park, S. J., "Preparation and Electrochemical Properties of Polymeric Composite Electrolytes Containing Organic Clay Materials," Polymer(Korea), 31(4), 297-301(2007).
  10. Kim, S., Han, A. R., Park, S. J. and Shin, J. S., "Preparation and Electrochemical Behaviors of Polymer Electrolyte Based on PEO/PMMA Containing Li Ion," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 47(4), 476-480(2009).
  11. Shriver, D. F., Papke, B. L., Ratner, M.A., Dupon, R., Wong, T. and Brodwin, M., "Structure and Ion Transport in Polymer-salt Complexes," Solid State Ionics, 5, 83-88(1981). https://doi.org/10.1016/0167-2738(81)90199-5
  12. Yasuo, T., Kazuo, H. and Yasuhiko, S., "Ionic Conductivities of Hybrid Films Composed of Comb Polymers Containing Esters as Pendant Groups and Lithium Trifluoromethane Sulfonate," Solid State Ionics, 60, 125-130(1993). https://doi.org/10.1016/0167-2738(93)90285-B
  13. Armand, M. B., "Polymer Electrolytes," Ann. Rev. Mater. Sci, 16, 245-261(1986). https://doi.org/10.1146/annurev.ms.16.080186.001333
  14. Wright, P. V., "Electrical Conductivity in Ionic Complexes of $Poly(ethylene oxide)^{a}$," Br. Polym. J. 7, 319-327(1976).
  15. Bohnke, O., Frand, G., Rezrazi, M., Rousselot, C. and Truche, C., "Fast Ion Transport in New Lithium Electrolytes Gelled with PMMA. 2. Influence of Lithium Salt Concentration," Solid State Ion., 66(1-2), 105-112(1993). https://doi.org/10.1016/0167-2738(93)90033-Y
  16. Christie, A. M. and Vincent, C. A., "The $Li/Li^{+}$ Couple in Propylene Carbonate Electrolytes and Poly(methyl methacrylate) gels," J. Appl. Electrochem., 26(3), 255-267(1996).
  17. Borkowska, R., Laskowski, J., Plocharski, J., Przyluski, J. and Wieczorek, W., "Performance of Acrylate-poly(ethylene oxide) Polymer Electrolytes in Lithium Batteries," J. Appl. Electrochem., 23, 991-995(1993). https://doi.org/10.1007/BF00266120
  18. Gao, L. and McDonald, D. D., "Characterization of Irreversible Processes at the Li/poly[bis(2,3-di-(2-methoxyethoxy)propoxy)phosphazene] Interface on Charge Cycling," J. Electrochem. Soc., 144(4), 1174-1179(1997). https://doi.org/10.1149/1.1837568
  19. Rietman, E. A. and Kaplan, M. L., "Single-ion Conductivity in Comblike Polymers," J. Polym. Sci., Part C: Polym. Lett., 28(6), 187-191(1990). https://doi.org/10.1002/pol.1990.140280601
  20. Fang, C. P. and Ying, S. K., "Structure and Ionic Conductivity of Graft Polyester Networks Containing Lithium Perchlorate," Eur. Polym. J., 29(6), 799-803(1993). https://doi.org/10.1016/0014-3057(93)90330-I
  21. Croce, F., Appetechi, G. B., Persi, L. and Scrosati, B., "Nanocomposite Polymer Electrolytes for Lithium Batteries," Nature, 394, 456-458(1998). https://doi.org/10.1038/28818
  22. Krejza, O., Velicka, J., Sedlarikova, M. and Vondrak, J., "The Presence of Nanostructured $Al_{2}O_{3}$ in PMMA-based Gel Electrolytes," J. Power Sources, 178(2), 774-778(2008). https://doi.org/10.1016/j.jpowsour.2007.11.018
  23. Kumar, B. and Scanlon, L. G., "Polymer-ceramic Composite Electrolytes: Conductivity and Thermal History Effects," Solid State Ion., 124(3-4), 239-254(1999). https://doi.org/10.1016/S0167-2738(99)00148-4
  24. Jeon, J. D., Kim, M. J. and Kwak, S. Y., "Effects of Addition of $TiO_{2}$ Nanoparticles on Mechanical Properties and Ionic Conductivity of Solvent-free Polymer Electrolytes Based on Porous P (VdF-HFP)/P(EO-EC) Membranes," J. Power Sources, 162(2),1304-1311(2006). https://doi.org/10.1016/j.jpowsour.2006.08.022
  25. Seo, Y. J., Cha, J. H., Lee, H., Ha, Y. J., Koh, J. H. and Lee, C. H., "P(VDF-HPF)-based Polymer Electrolyte Filled with Mesoporous ZnS," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 46(1), 170-174(2008).
  26. Harris, C. S. and Rukavina, T. G., "Lithium Ion Conductors and Proton Conductors: Effects of Plasticizers and Hydration," Electrochim. Acta, 40(13-14), 2315-2320(1995). https://doi.org/10.1016/0013-4686(95)00185-H
  27. Osaka, T., Liu, X., Nojima, M. and Mastuda, T., "An Electrochemical Double Layer Capacitor Using an Activated Carbon Electrode with Gel Electrolyte Binder," J. Electrochem. Soc., 146, 1724-1729(1999). https://doi.org/10.1149/1.1391833
  28. Johan, M. R., Shy, O. H., Ibrahim, S., Yassin, S. M. M. and Hui, T. Y., "Effects of $Al_{2}O_{3}$ Nanofiller and EC Plasticizer on the Ionic Conductivity Enhancement of Solid PEO-$LiCF_{3}SO_{3}$ Solid Polymer Electrolyte," Solid State Ion., 196, 41-47(2011). https://doi.org/10.1016/j.ssi.2011.06.001
  29. Kim, H. S., Cho, B. W., Yun, K. S. and Chun, H. S., "Electrochemical Characteristics and Physical Properties of Poly(ethylene oxide)-Li Based Polymer Electrolyte," J. Korean Ind. Eng. Chemistry, 7(3), 433-442(1996).
  30. Wen, Z., Itoh, T., Ikeda, M., Hirata, N., Kubo, M. and Yamamoto, O., "Characterization of Composite Electrolytes Based on a Hyperbranched Polymer," J. Power sources, 90(1), 20-26(2000). https://doi.org/10.1016/S0378-7753(00)00442-0
  31. Lin, C. W., Hung, L. C., Venkateswarlu, M. and Hwang, B. J., "Influence of $TiO_{2}$Nano-particles on the Transport Properties of Composite Polymer Electrolyte for Lithium-ion Batteries," J. Power Sources, 146, 397-401(2005). https://doi.org/10.1016/j.jpowsour.2005.03.028
  32. Wang, Y. J. and Kim, D. J., "Crystallinity, Morphology, Mechanical Properties and Conductivity Study of in Situ Formed PVDF/ $LiClO_{4}/TiO_{2}$ Nanocomposite Polymer Electrolytes," Electrochimica Acta, 52, 3181-3189(2007). https://doi.org/10.1016/j.electacta.2006.09.070
  33. Kim, S. and Park, S. J., "Preparation and Ion-conducting Behaviors of Poly(ethylene oxide)-composite Electrolytes Containing Lithium Montmorillonite," Solid State Ion., 178, 973-979(2007). https://doi.org/10.1016/j.ssi.2007.03.008
  34. Kim, S. and Park, S. J., "Interlayer Spacing Effect of Alkylammonium- modified Montmorillonite on Conducting and Mechanical Behaviors of Polymer Composite Electrolytes," J. Colloid Interface Sci., 332, 145-150(2009). https://doi.org/10.1016/j.jcis.2008.12.006

Cited by

  1. Tubular Membranes Using Surface Modified Supports vol.52, pp.2, 2014, https://doi.org/10.9713/kcer.2014.52.2.214
  2. Fabrication of PEO-PMMA-LiClO4-Based Solid Polymer Electrolytes Containing Silica Aerogel Particles for All-Solid-State Lithium Batteries vol.11, pp.10, 2018, https://doi.org/10.3390/en11102559