DOI QR코드

DOI QR Code

Synthesis of Aluminophosphate using Structure Directing Agent containing Piperidine Moiety: Effect of SDA on Crystal Structure

피페리딘 구조유도분자를 이용한 알루미노포스페이트 제올라이트 합성: 피페리딘 구조유도분자가 결정구조 형성에 미치는 영향

  • Shin, Hye Sun (School of Applied Chemical Engineering and the Institute of Catalysis Research, Chonnam National University) ;
  • Jang, Ik Jun (School of Applied Chemical Engineering and the Institute of Catalysis Research, Chonnam National University) ;
  • Shin, Na Ra (School of Applied Chemical Engineering and the Institute of Catalysis Research, Chonnam National University) ;
  • Ju, Bit Na (School of Applied Chemical Engineering and the Institute of Catalysis Research, Chonnam National University) ;
  • Cho, Sung June (School of Applied Chemical Engineering and the Institute of Catalysis Research, Chonnam National University)
  • 신혜선 (전남대학교 응용화학공학부) ;
  • 장익준 (전남대학교 응용화학공학부) ;
  • 신나라 (전남대학교 응용화학공학부) ;
  • 주빛나 (전남대학교 응용화학공학부) ;
  • 조성준 (전남대학교 응용화학공학부)
  • Published : 2011.10.01

Abstract

Structure directing agent(SDA) containing piperidine moiety such as piperidine(PI), 2-methylpiperidine (MPI), 2,6-dimethylpiperidine(DMPI) and 2,2,6,6,-tetramethylpiperidine(TMPI), respectively has been utilized to synthesize aluminophosphate zeolite using hydrothermal method. The gel composition was $1.0Al_2O_3:1.0P_2O_5:0.76SDA:45H_2O$ and the hydrothermal heating was performed in an oven at 443 K and for 7 days at static mode. The obtained zeolitic material contained a lamellar structure when PI was used as the SDA. With a progressive increase of the SDA size, various structures of aluminophosphate including AlPO-5 of AFI structure were obtained. The aluminophosphate of SAS structure was formed when the largest TMPI was utilized as the SDA, which was confirmed by the Rietveld refinement. The result of $^{27}Al$ and $^{31}P$ MAS NMR of the sample suggested that Al and P were incorporated into the framework of the aluminophosphate.

피페리딘 구조가 포함된 구조유도분자가 미치는 알루미노포스페이트 제올라이트 합성과 결정구조에 대한 영향을 조사하였다. 피페리딘 구조가 포함된 구조 유도분자는 피페리딘을 포함하여 2-메틸피페리딘, 2,6-디메틸피페리딘, 2,2,6,6-테트라메틸피페리딘을 사용하였다. 제올라이트 합성은 $1.0Al_2O_3:1.0P_2O_5:0.76SDA:45H_2O$의 조성으로 $170^{\circ}C$에서 7일동안 수열합성을 하였다. 피페리딘을 구조유도분자로 사용한 경우, 층상 구조가 형성되었으며 구조유도분자의 크기가 커질수록 AFI 구조의 AlPO-5가 형성되고 가장 큰 구조 유도분자를 이용한 경우, SAS 구조의 알루미노포스페이트가 형성됨을 리트벨트법으로 확인할 수 있었다. 또한 고체핵자기공명분석법의 결과로부터 미세 다공성 물질인 SAS 골격구조 내에 알루미늄과 인이 위치함을 알 수 있었다.

Keywords

References

  1. Pastore, H. O., Coluccia, S. and Marchese, L., "Porous Aluminophosphates: From Molecular Sieves to Designed Acid Catalysts," Annu. Rev. Mater. Res., 35, 351(2005). https://doi.org/10.1146/annurev.matsci.35.103103.120732
  2. Wilson, S. T., Lok, B. M., Messina, C. A., Cannan, T. R. and Flanigen, E. M., "Aluminophosphate Molecular Sieves: A New Class of Microporous Crystalline Inorganic Solids," J. Am. Chem. Soc., 104, 1146(1982). https://doi.org/10.1021/ja00368a062
  3. Davis, M. E., "Ordered Porous Materials for Emerging Applications," Nature, 417, 813(2002). https://doi.org/10.1038/nature00785
  4. El Haskouri, J., Perez-Cabero, M., Guillem, C., Latorre, J., Beltran, A., Beltran, D. and Amoros, P., "Mesoporous Aluminum Phosphite," J. Solid State Chem., 182, 2122(2009). https://doi.org/10.1016/j.jssc.2009.05.034
  5. Yu, J. H. and Xu, R. R., "Insight Into the Construction of Openframework Aluminophosphates," Chem. Soc. Rev., 35, 593(2006). https://doi.org/10.1039/b505856m
  6. Yamamoto, K., Ikeda, T., Onodera, M., Muramatsu, A., Mizukami, F., Wang, Y. X. and Gies, H., "Synthesis and Structure Analysis of RUB-50, An Lev-type Aluminosilicate Zeolite," Micropor. Mesopor. Mat., 128, 150(2010). https://doi.org/10.1016/j.micromeso.2009.08.016
  7. Louer, D. and Boultif, A., "Indexing with the Successive Dichotomy Method, Dicvol04," Z. Kristallogr, 225(2006).
  8. Altomare, A., Caliandro, R., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. G. G. and Rizzi, R., "Automatic Structure Determination from Powder Data with Expo2004," J. Appl. Crystallogr., 37, 1025(2004). https://doi.org/10.1107/S0021889804021417
  9. Larson, A. C. and Von Dreele, R. B., "General Structure Analysis System (GSAS)," Los Alamos National Laboratory Report LAUR (2000).
  10. Toby, B. H., "Expgui, a Graphical User Interface for GSAS," J. Appl. Crystallogr., 34, 210(2001). https://doi.org/10.1107/S0021889801002242
  11. Wang, J., Song, J., Yin, C., Ji, Y., Zou, Y. and Xiao, F.-S., "Tetramethylguanidine- templated Synthesis of Aluminophosphatebased Microporous Crystals with AFI-type Structure," Micropor. Mesopor. Mat., 117, 561(2009). https://doi.org/10.1016/j.micromeso.2008.07.040
  12. Ito, A., Maekawa, H., Kawagoe, H., Komura, K., Kubota, Y. and Sugi, Y., "Shape-selective Alkylation of Biphenyl over H-[Al]-SSZ-24 Zeolites with Afi Topology," J. Chem. Soc. Jpn, 80, 215(2007). https://doi.org/10.1246/bcsj.80.215
  13. Shen, W., Yang, J., Li, S., Hu, W., Xu, J., Zhang, H., Zou, Q., Chen, L. and Deng, F., "Multinuclear Solid-state NMR Studies on Phase Transition of Mesostructured Aluminophosphate," Micropor. Mesopor. Mat., 127, 73(2010). https://doi.org/10.1016/j.micromeso.2009.06.031
  14. Shirley, R., The crysfire 2002 system for automatic powder indexing: User's manual, The Lattice Press, Surrey(2002).
  15. Le Bail, A., Duroy, H. and Fourquet, J. L., "Ab-initio Structure Determination of $LiSbWO_6$ by x-ray Powder Diffraction," Mater. Res. Bull., 23, 447(1988). https://doi.org/10.1016/0025-5408(88)90019-0
  16. Grosse-Kunstleve, R. W., McCusker, L. B. and Baerlocher, C., "Zeolite Structure Determination from Powder Diffraction Data: Applications of the Focus Method," J. Appl. Crystallogr., 32, 536 (1999). https://doi.org/10.1107/S0021889899003453
  17. Patinec, V., Wright, P. A., Lightfoot, P., Aitken, R. A. and Cox, P. A., "Synthesis of a Novel Microporous Magnesioaluminophosphate, STA-6, Containing An Unbound Azamacrocycle," J. Chem. Soc. Dalton, 3909(1999).
  18. Wragg, D. S., Morris, R., Burton, A. W., Zones, S. I., Ong, K. and Lee, G., "The Synthesis and Structure of SSZ-73: An All-silica Zeolite with An Unusual Framework Topology," Chem. Mater., 19, 3924(2007). https://doi.org/10.1021/cm0705284
  19. Baerlocher, C., Gramm, F., Massuger, L., McCusker, L. B., He, Z., Hovmoller, S. and Zou, X., "Structure of the Polycrystalline Zeolite Catalyst IM-5 Solved by Enhanced Charge Flipping," Science, 315, 1113(2007). https://doi.org/10.1126/science.1137920
  20. Baerlocher, C., Xie, D., McCusker, L. B., Hwang, S. J., Chan, I. Y., Ong, K., Burton, A. W. and Zones, S. I., "Ordered Silicon Vacancies in the Framework Structure of the Zeolite Catalyst SSZ-74," Nat. Mater., 7, 631(2008). https://doi.org/10.1038/nmat2228
  21. Favre-Nicolin, V. and Cerny, R., "Fox, 'Free Objects for Crystallography': A Modular Approach to ab initio Structure Determination from Powder Diffraction," J. Appl .Crystallogr., 35, 734(2002). https://doi.org/10.1107/S0021889802015236